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Summary

Population composition is often estimated by double sampling in which the value of a covariate is
noted on each of a large number of randomly selected units and the value of the covariate and the
exact class to which the unit belongs is noted for a smaller sample. The cross-classified sample can be
used to estimate the classification rates and these, in turn, can be used in conjunction with the esti-
mated distribution of the covariate to obtain an improved estimate of the population composition over
that obtained by direct observation of the identity of the individuals in a small sample. There are two
approaches to this problem characterized by the way in which the classification rates are defined. The
simplest approach uses estimates of the probability P(i | j) that the unit is actually in class i given that
the covariate is in class j. The more complicated approach uses estimates of the probability P(j | i) that
the covariate falls in class j given that the unit is actually in class i. The latter approach involves
estimating more parameters than the former but avoids the necessity for the two samples to be drawn
from the same population. We show the two approaches can be combined when there are multiple
surveys. For example, one might conduct a disease survey for several years; in each year the accurate
and/or error-prone techniques may be applied to samples. The sensitivities and specificities of the error-
prone test are assumed constant across surveys. Generalizations allow for more than one error-prone
classifier and partial verification (estimation of misclassification rates by application of the accurate
technique to fixed subsamples from each error-prone category). The general approach is illustrated by
considering a repeated survey for malaria.

Key words: Disease surveys; Error-prone tests; Misclassification probabilities;
Contingency tables; Age-length keys; Stratified random sampling; Fal-
lible classifiers.

1. Introduction

It is often logistically or economically impractical to measure the value of a pri-
mary variable of interest on a large enough sample. This has led to so-called
double sampling, where a more readily observed covariate is observed on a large
sample. Because the covariate does not perfectly reflect the value of the primary
variable, it is necessary to obtain a small sample on which both the primary vari-
able and the covariate are observed so that the association between the variables
can be characterized.
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This problem occurs in numerous guises, as illustrated by the following three
examples. 1) In a disease survey, one may use an inexpensive but error-prone test
to examine a large number of animals. On a much smaller sample, one might use
both the error-prone test and an expensive but exact test to determine the misclas-
sification rates of the error-prone test. This information can then be used to correct
the results obtained from that part of the study in which only the error-prone test
was used. 2) In fisheries research, it is important to estimate the age composition
of the catch. A common procedure is to measure the lengths of a large number of
fish as this information is easy to obtain. On a smaller sample, the otoliths (ear
stones) are collected and the ages of the fish are determined by counting annual
growth rings. From knowledge of the length composition of the catch and the age
composition within each length class it is possible to estimate the age composition
of the catch. 3) In the social sciences, a great deal of information may be col-
lected inexpensively by having people fill out questionnaires. For a subset of the
respondents, one may wish to evaluate the reliability of the information by con-
ducting follow-up studies, e.g., by conducting detailed interviews or checking offi-
cial records. The information obtained in the follow-up studies can be used to
adjust the estimates of proportions obtained from the questionnaires.

A number of complications can arise in double sampling studies. First, data
may accumulate over time or space such that the underlying population structures
may be heterogeneous. Second, the verified (cross-classified) subsample may not
be a simple random sample of the observations on the covariate. Third, the meth-
ods of observation or the covariate that is observed may change over time; at
some times or in some places more than one covariate may be observed. We begin
by showing that there are two approaches in the literature for interpreting the
results from the survey of the covariate (i.e, the error-prone survey) that differ in
the way the classification probabilities are defined. We combine the two ap-
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Fig. 1. Notation for the results of testing » units with both an error-prone and an exact test
(top) and for the results of testing N units with just the error-prone method (bottom)
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proaches in a general model in Section 2 and show in Section 3 that the model
allows for partial verification. A repeated disease survey is considered as an exam-
ple in Section 4. In Section 5 the approach is generalized to consider several test
types. The discussion in Section 6 contrasts our approach with the use of hierarch-
ical loglinear models.

We illustrate the logic of the two basic approaches by considering the simple
case in which » units are examined using an accurate and an error-prone test; the
accurate test assigns an integer value / ranging from 1 to Z to each unit while the
error-prone test assigns an integer J ranging from 1 to J. The result is an Z x J
cross-classified table as in Figure 1. There is also a sample of size N on which
observations are made using only the error-prone test. We consider two procedures
for selecting these samples. In this paper, the symbols i and j always refer to a
realization of the random variables 7 and J, respectively.

1.1 Approach 1 — Single population model

Assume that the n cross-classified units and the N units examined with just the
error-prone test are simple random samples of fixed size from the same popula-
tion. Then, the probability P(i | j) that a unit is actually of type i given that it is
classified type j by the error-prone test is the same for both samples. One can
estimate these conditional probabilities by

P(ilj) = g; = ny/n,
where the  symbol denotes an estimate and the rest of the notation is as in Fig-

ure 1. Denote the Z x J matrix with elements g; by Q and the observed vector of
error-prone proportions by

a4 L 4T |Yi+na Yya+no yr+n.g]"
E=1é, é,...,é5] = Non Nan' Nin

where, again, the notation is as defined in Figure 1. Let the actual population

composition (proportions) be denoted by the vector A = [ay, ay, ... ,aI]T. Then,
intuitively, the actual composition can be estimated by

A =QE.

In this example, the conditional probabilities are estimated from the first sample
and the marginal probabilities P(j) are estimated from both samples as é;.

This estimator, an example of double sampling, can be shown to be a maximum
likelihood estimator (see TENENBEIN, 1970; HOCHBERG, 1977; JOLAYEMA, 1990). It is
also an example of stratified random sampling where the units are post-stratified by
the results of the error-prone test (SWENSEN, 1988). Related estimators, which are not
fully efficient, are discussed by WHITE and CASTLEMAN (1981) and HAND (1986).
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1.2 Approach 2 — Two-population model

Consider now that the cross-classified sample and the error-prone sample are sim-
ple random samples of fixed size obtained from different populations. For exam-
ple, in the first year of a study both the error-prone and accurate methods might
be used but in the second year only the error-prone method is used. The condi-
tional probabilities P(i | j)fr om the first year will not be applicable to the results
in the second year if the population composition has changed. To see this, consid-
er the probability that a unit is actually type 1 given that the error-prone test indi-
cates the animal is type 1. If, in the first year, all units are type 1 then all of the
units indicated by the error-prone test to be typel will in fact be type 1l
(P(I=1|J=1)=1). I, in the second year, none of the animals are type 1 then
none of the units indicated by the error-prone test to be type 1 will in fact be
type 1 (P(I =1|J =1) is now 0).

There may be a way out of this dilemma. The probability that a unit is classi-
fied type j by the error-prone test given that it is actually type i, P(j| i), might not
vary with the population composition. For example, consider that the covariate is
the length of a fish and the actual variable of interest is the age of the fish. The
age composition of the fish population will change each year because the number
of young fish recruited into the population is highly variable and thus the prob-
ability that a fish is a certain age given its size, P(age = i | length = j), will vary
from year to year. But, the distribution of size about age, P(length = j |age = i),
should not change as the population changes in age composition except inasmuch
as the growth may be somewhat dependent on environmental conditions. It thus
may be entirely reasonable to suppose that P(length = j| age = i) is constant over
time. Similarly, the specificity and sensitivity of a medical test might not vary
with the prevalence of the disease (ROGAN and GLADEN, 1978). This assumption
would have to be investigated for each application.

The conditional probabilities can be estimated by

P(] | i) = f,] = n,-j/n,-.

where the n;; are the cell counts from a cross-classified sample of size n taken at
some time £ Let R denote the Z x J matrix with elements 7;. Also, define the
vector E* to have elements

E* =[yi/N, y2/N,...,y7/N]",

that is, the vector E* contains estimates of the marginal probabilities P(j) obtained
from just the error-prone sample taken at a time ¢ (¢ # ¢). Then, the actual com-
position (proportions) at time ¢ can be estimated from the moment estimator equa-
tions

E*=R7A.
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Thus, assuming R is nonsingular, the actual composition can be estimated by

A= RN TE* (1a)
or, more generally, by least squares
A = (RR")"' RE* (1b)

assuming the number of levels of the covariate is greater than or equal to the
number of true classes, and assuming RT is of full column rank.

It can be seen that when the estimates from (la) are feasible, they are maximum
likelihood estimates for Poisson and multinomial data. CLARK (1981) developed an
alternative fitting procedure to (1b) which restricts the parameter estimates to the
feasible region. HOENIG and HEISEY (1987) developed a model with a more realistic
error structure in which the uncertainty in both the classification rates and the dis-
tribution of the covariate is accounted for explicitly as functions of the sample sizes.

This approach has appeared in the applied literature as a way to correct deer
age composition estimates (SEARLE, 1966 pp.93-94); correct stock composition
estimates for mixed fisheries (WORLUND and FREDIN (1962), FUKUHARA et al.
(1962), BERGGREN and LIEBERMAN (1978), PELLA and ROBERTSON (1978), vaN
WINKLE etal. (1988)); estimate prevalence of diseases (ROGAN and GLADEN
(1978), GREENLAND and KLEINBAUM (1983), HAND (1986)); correct for misclassifi-
cation in a fourfold table relating disease status to risk factors (KLEINBAUM et al.
(1982) and references therein); correct estimates of deer harvest composition ob-
tained from hunter reports (D. Ingebrigtsen, MN Department of Natural Resources,
pers. comm.); and convert length-frequency distributions to age-frequency distribu-
tions (CLARK (1981), BARTOO and PARKER (1983), KIMURA and CHIKUNI (1987),
HoEenNiG and HEISEY (1987)).

Thus, there are two approaches to using estimates of classification probabilities in
conjunction with a vector of observations on a covariate. Method 1 is straight for-
ward, well known, and requires that the classification probabilities be estimated
from a sample of the population to which they will be applied. For method 2, the
classification rates are conditional on the actual identity rather than on the error-
prone identity. The method has been repeatedly derived in the applied literature but
does not appear to be well established in the statistical literature. In the next section,
we show how the two methods can be combined in a likelihood framework.

2. Combining the Approaches

2.1 Two surveys

Assume that we conduct a survey at two times and obtain three samples of fixed
size. Sample 1 is a simple random sample of size n; collected during the first
survey. All n; units are examined by the accurate method of classification and the
error-prone or surrogate classification method. Samples 2 and 3 are simple random
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samples from the second survey and represent the population of interest. All n,
units in sample 2 are classified by both methods. All N, units from sample 3 are
classified according to just the error-prone (or surrogate) classification method.
The subscript denotes the population (i.e., survey) from which the sample was
drawn. We denote the count of units with accurate classification { and surrogate
classification j in samples 1 and 2 by n;; and ny;, respectively. The count of units
in sample 3 with surrogate classification j is denoted by y,. Again, I ranges from
1 to Z and j from 1 to J. J must be greater than or equal to 7. We assume that
P(j | i) for sample 1 is the same as for samples 2 and 3, and we denote this by
P(j | i);, In general, subscripts on probabilities are used to denote the population
or populations to which the probabilities apply.

Likelihood for Approach 1:

Approach 1 utilizes the information in samples 2 and 3. The likelihood for
samples 2 and 3 is the product of independent multinomials and can be written
(LirTLE and RUBIN 1987)

A H H [P(i | /), P(),]™ H P(j)¥ .

i=1j=1
There are Z.7 — 1 parameters to be estlmated: J(Z — 1) conditional probabilities
and J — 1 marginal probabilities P(j). The goal is to estimate the proportion P(i),
that is actually in class i and, by the invariance principle of maximum likelihood
estimation, this can be accomplished by

Likelihood for Approach 2:
Approach 2 utilizes the information in samples 1 and 3. The likelihood is again
the product of multinomials

Ay H H POl )12 P(@),]™" H

i=1j=1 j=1

; P(j i) P(’)z} .

Here, 7 must be greater than or equal to Z. There are ZJ + 7 — 2 parameters to
be estimated: 7 — 1 estimates of P(i),, Z — 1 estimates of P(i),, and Z(J — 1)
conditional probabilities.

combined likelihoods:
The likelihood for all of the data can be written as

Az H H [P(JI 812 P(D),]™ H H [P(1 D12 P@),]™

i=1 ]— =1 ]__

X H [ZP(] lz)lzP(z)] :

J=1 }i=]
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We have rewritten the likelihood for samples 2 and 3 in terms of P(j | i);,. How-
ever, it should be noted that this likelihood reduces to A; when there are no data
from a previous time (r; = 0).

2.2 K > 2 surveys

The likelihood can be generalized to allow for X surveys and up to three kinds of
samples within a survey. Here, a survey refers to a group of units examined from
the same time and place. The survey may produce any and all of the following
types of samples: 1) both classification variables are noted on a random sample,
2) just the error-prone or surrogate classifier is noted, and 3) just the accurate
classifier is noted. Denote the number classified as type j in the kth survey for a
sample in which just the surrogate classifier is used by yj, the number classified
as type i in the kth survey for a sample in which just the accurate classifier is used
by xi, and the number classified as i, j by n;. (Note that y;,x i and/or n can be 0).
Then, the general form of the likelihood is proportional to

K
[ PG

1 k=1
(2)

Here, P(j | i) is assumed to pertain to all samples and P(i), pertains to all samples
within the kth survey. The generalization to allow for samples for which just the
accurate classifier is used has been termed triple sampling by HOCHBERG and TE-
NENBEIN (1983) in the context of Approach 1.

The question of which parameters are estimable may require some thought.
Suppose that in the first year of a study just the error-prone technique is used and
that no sample cross-classified by the error-prone and accurate tests is obtained in
subsequent years. The year one population composition can still be estimated if in
at least & subsequent years with different population compositions samples of both
type 2 and 3 are obtained, where A is the number of independent conditional
probabilities P(j | i) that must be estimated. For example, in a disease survey
there are two conditional probabilities (e.g., sensitivity and specificity) that must
be estimated. Samples of type 2 and type 3 obtained in years 2 and 3 of a study
provide the following system of equations:

é21=P(j=1Ii=1)&21+P(j= 1|i =2)d22,
é31:P<J:1ll:1)d31+P<J: 1|l :2)d32,

where the subscripts x, y refer to year x and category y. The estimates ey, and ay,
can be obtained from the samples, and the system of equations can be solved for
the conditional probabilties provided the disease prevalence varies across the
years.

II:N-

EHH)O}

i=1

I J K
“QEQWWDNH“HH

j=1 k=1
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3. Allowing for Partial Verification

Until now we have assumed that, when a cross-classified table is obtained, the
units that are examined by the exact test are a simple random sample of the units
for which the covariate (e.g., error-prone test result) was observed. In practice, one
is likely to consider the results of the error-prone test or covariate in selecting
units for testing with the exact test, e.g., one might use the exact test on equal
numbers of apparently-diseased and apparently-disease-free units as determined by
the error-prone test. This is known as partial verification and failure to take the
stratification into consideration results in what has been termed verification bias
(e.g., ZHoU, 1996). There is good reason to consider the results of the error-prone
test in selecting the sample for additional testing: otherwise one might obtain by
chance a sample in which none of the units were classified as, say, diseased by
the error-prone test and one would not be able to estimate some of the classifica-
tion rates. HAITOvsKy and RAPP (1992) modified Approach 1 to allow for fixed
numbers from each error-prone category to be tested with the accurate method.
Here, we show how the general model (2) can be modified to allow for stratifi-
cation by the covariate. Assume that at a previous time a sample of N; units was
randomly selected and tested with thejerror—prone procedure (Nif ixed) resulting in

yﬂ units being classified as type j, Z yh = N1. Suppose further it is decided to

use the exact test on n.;; units cla331ﬁed by the error-prone test as type j, for
j=1,...,7, such that n; = Zn.;; units in all are tested. This results in a cross-
classiﬁed table with fixed column totals of n.;; and table entries of n.;;.

The likelihood for the N; units classified by just the error-prone test is simply a
multinomial

A, I‘ZIP(J')??1 = H {E:P(Hl) ()1}1 :

J=1 J=1
The likelihood for the cross-classified table is the product of J multinomials, one
for each column

7z

11 P(i [ )"

.':]km

Ay, x

Il
_

J
Now, in the population at large,

P(j| i) P(i),
O =TT =mea=w,

by Bayes rule. Substituting this into the product of the likelihoods Ay, and Ay
yields a likelihood in ZJ — 1 unknowns: Z(J — 1) conditional probabilities
P(j | ) and 7 — 1 marginal probabilities P(i),. Thus, when the previous data have
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been stratified by the results of the error-prone tests, the likelihood still contains
information on the conditional probabilities that are used to model the current
data. Note that to use approach 2, with stratification by the covariate, it is neces-
sary to know the results of the survey with the error-prone test, i.e., the y}“l.

The data for the current survey are handled in the same way when the cross-
classified table is generated by fixing the numbers in each error-prone category. If
K surveys are conducted, each giving rise to an error prone vector and a cross-
classified table obtained by stratifiying on the error-prone test, the complete like-
lihood for all of the data is proportional to

P(j| i) P(i), e
i=1j=1 k=1 | & . j
thP(]|I:h)P(I:h)k

*

Yik

K I
I1 | PG 1) PO),

1 k=1 Ll=1

:m

7 Yk

I J K
=11 1;[ TLIPGT ) P(@), ™ H H EP(J ) P(i)y (3)

j=1k=1 [i=1

where yx = yj — n.; is the number of observations made using just the error-
prone technique. Equation (3) is the same as Equation (2).

Note that the estimator of P (i) for Tenenbein’s model (Approach 1) is the same
as the estimator based on stratification derived above for the case where the cross-
classified data come from the same population as the sample tested with just the
error-prone test.

4. Example — A Repeated Disease Survey

We consider a portion of a repeated survey described by NEDELMAN (1988) in
which the proportion of people with malaria was estimated in part of Nigeria.
Blood smears from some subjects were examined by both a senior and a junior
investigator while smears from others were examined by only a junior investigator.
Nedelman described some technical aspects of the testing which call into question
the use of simple double sampling methodology. Therefore, we use these data
only for illustrative purposes and assume the senior investigator to be infallible
while the junior investigator is error-prone. A portion of the data is shown in
Table 1. In the most recent survey shown (survey 5), only 34 subjects were tested
by the infallible classifier. Thus, it is natural to try to make use of the available
previously collected information. The conditional proportions in the five surveys
were grossly similar: the proportion classified as type 2 by the fallible classifier
when the accurate classification was type 2 (i.e., the estimated sensitivity) varied
from 84 to 100% with no trend over time; similarly, the proportion classified as
type 2 by the fallible classifier when the accurate classification was type 1 (i.e.,
the complement of the estimated specificity) varied from O to 12% with no tem-
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Table 1

Malaria survey data from NEDELMAN (1988) pertaining to age class 1. I refers to the true
condition and J refers to the error-prone classification (1 = not diseased, 2 = diseased). The
conditional probability P(2 | i) is estimated from the corresponding row of the cross-classifi-

cation
survey cross-classification P2 | §) error-prone vector
1 J=1 J=2 J=1 J=2
1 1 5 0 0.00 52 173
2 0 15 1.00
2 1 7 0 0.00 68 160
2 3 24 0.89
3 1 13 2 0.13 90 145
2 3 16 0.84
4 1 14 2 0.12 131 157
2 1 0.88
5 1 10 1 0.09 81 279
2 1 22 0.96
1-5 1 49 5 0.09
2 8 84 091

poral trend (Table 1). The sample sizes were small so there is little evidence that
the conditional classification rates varied among surveys.

Using the method of TENENBEIN (1970) and JOLAYEMA (1990) (Approach 1) on
the data from survey 5, the prevalence of malaria is estimated to be 0.754 (line 1,
Table 2). The estimate is hardly changed when the cross-classified table from sur-

Table 2

Estimates, P(I = 2), of the prevalence of malaria in Nigeria at the time survey 5 was con-
ducted based on the data in Table 1. First line is based on analysis of the cross-classified
table and error-prone vector from survey 5; second line, the cross-classified tables from
surveys 4 and 5 and the error-prone vector from survey 5; third line, tables and vectors from
surveys 4 and 5; fourth line, tables from surveys 1 through 5 and vector from survey 5. In
each case, prevalence in the survey year(s) and sensitivity and specificity were estimated.
Standard errors are based on the square root of the inverse of the expected information. A
small number (0.01) was added to the zeros for surveys 1 and 2 in Table 1 prior to the

analysis.

data standard number of
P(I = 2) error deviance parameters df

2 samples, survey 5 0.754 0.043 1.57 3 1

3 samples, surveys 4 & 5 0.767 0.039 2.72 4 3

4 samples, surveys 4 & 5 0.752 0.040 4.75 4 4

6 samples, surveys 1 to 5 0.795 0.034 10.65 7 9
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vey 4 is included in the analysis (P(I = 2) = 0.767; line 2, Table 2) and when the
cross-classified table and error-prone vector from survey4 are included
(P(I = 2) = 0.752; line 3, Table 2). There is a modest reduction in standard error
when the data from survey 4 are included. When data from surveys 1 through 5
are used to estimate the year-specific prevalences and the sensitivity and specifi-
city the estimate for survey 5 is P(I = 2) = 0.795. The standard error of the esti-
mated prevalence for survey 5 is reduced by 21 percent when all five surveys are
analyzed instead of just the data from survey 5.

For Tenenbein’s estimator (using just survey 5) an exact solution was available.
For the other analyses, the likelihood can be numerically maximized using a New-
ton-Raphson (PRrEss et al., 1992), Fisher scoring, or EM algorithm. We used Fish-
er scoring implemented as iteratively reweighted least squares in SAS Proc NLIN
(JENNRICH and MOORE, 1975). Our convergence criterion was that the maximum
relative absolute change in the parameters was less than 108, We encountered no
computational difficulties.

5. Extension to Several Test Types

In general, surveys may be repeated year after year and the observational methods
(tests) may evolve over time. This means that several tests may be used in any
year. Here, we demonstrate how this can be handled by considering three tests
(say, accurate, error-prone reference, and error-prone new) with outcomes I, J, and
H, respectively. In any year, up to seven types of samples could be obtained by
applying the tests in various combinations (Table 3).

When all samples are simple random samples, the likelihood in (2) can be gen-
eralized to

®
M

|
—_

L i=1

fTeoz 1111 [z PG i) P<z>k} il [Z R(1 1) P() }

7 J K I H K J H K

1T IT (PG 1) P T T TT PGk 1) PG T 1T 1T P, )
i=1j=1k=1 i=1 h=1k=1 j=1h=1 k=1

I J H K

I 1 T 11 PG, J, m, @

where any of the exponents can be zero. It remains to find parameterizations for
P(h, j), and P(i, j, h), that introduce as few parameters as possible while main-
taining realistic assumptions. Following BAKER (1991), we can make the assump-
tion of independence of the outcomes of the reference and new tests conditional

on the trueclassification. Then P(h, j), can be replaced by Z P(j| i) P(h|i)
P(i), and P(i, j, h), can be replaced by P(j| i) P(h| i) P(i),. The resulting model
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Table 3
The seven types of samples that may be obtained when three tests are available in survey

k (k=1,...,K). The subscript i refers to the accurate classification (i = 1,...,7); j, to the
reference test (j=1,...,7); h, to the new test (h = 1,...,H)

test(s) used variable(s) observed observations
accurate 1 Xik
reference J Yik

new H Znk

accurate + reference LJ Rijk

accurate + new LH Mikk
reference + new JH Link

accurate + reference + new ILJH Uijhk

has Z(K + J +H — 2) — K parameters: (Z — 1) K prevalences P(i),, (K—-1)7
conditional probabilities P(j | i), and (K — 1) Z conditional probabilities P(k | i).
Alternative formulations, and formulations involving other covariates, are given by
BAKER (1991) and are not repeated here.

If stratification or partial verification is used, Equation (4) can be modified in
like manner. Assume that when the accurate test is used in combination with
either the reference or the new test the stratification is according to the value of
the error-prone test (thus, the n.; and m.j; are fixed rather than random). The
counts /i, obtained by using the reference and new tests together, could arise by
stratifying by the value of either test. The likelihood is

Ag x H H P()" H H [Z P(j| )P(i)kjl I H [Z P(h i) P(l)kjl :

j=lk= = h=1k=1 |i=
ﬁﬁﬁ i P(j | i) P(i), lzI ﬁ ﬁ _ P(h | i) P(i), o
CEL PG =0Pa =0 TS PG 1= P2 =),
I H K I J H K
<ILIL I B0 TLILIL L e

where the B(h, j), and Y(i, j, h), are cell probabilities that depend on the nature
of the stratification. If observations are stratified according to the result of the
new test when the new and reference tests are used together, the cell probabilities
would be

Hmm:;mnowmwmm

Ot(h, ])k = P(]l h)k = P(h)

; P(h | i) P(i),
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If the observations are stratified according to the result of the reference test the
cell probabilities would be

T

CP(h,Jj), 2 RGPk i) P(D)
T
,; P(j i ) P(i),

olh, j), =Phlj) = =
(ks ) = PO | = =53
The cell probabilities (i, j, &), depend on the the nature of the stratification and
can be determined the same way as used above. Stratification requires the estima-
tion of no new parameters.
When a new test is introduced, it is not sufficient to obtain a sample cross-
classified by the new and reference tests at one time and another sample cross-
classified by the reference and accurate tests at another time. Additional informa-
tion must be available such as:
1) the assumption is made that the results of the new and reference tests are
independent conditional on the true (accurate) classification (BAKER 1991)

2) additional covariates are observed on the units (BAKER 1991)

3) surveys are conducted at different times or places with varying prevalences
(WALTER and IrRwiG, 1988; Hur and WALTER, 1980). In this case, it is not
even necessary to have observations on the accurate classification.

6. Discussion

The methods considered here combine two heretofore unrelated approaches. The
general approach allows one to use previous information whose cost is essentially
free. Often, the previous information on true identity will have been collected
according to a scheme with partial verification. This presents no problem if the
estimate of the population composition according to the surrogate classifier is esti-
mated for at least one survey in which a cross-classified sample is obtained (so
that the P(j| i) are estimable).

EspeLAND and Hur (1987) presented a general method for estimating population
proportions when there are several traits of interest and each of these may be
observed with accurate and, optionally, error-prone classifying devices. They point
out that samples cross-classified by both the accurate and error-prone methods can
be from the same population as, or from a different population than, the sample
from the population of interest which was only observed with the error-prone
method. Thus, their method can accommodate either one of the basic approaches
discussed in Section 1. It is instructive to observe what happens if one tries to use
their approach for the case where classification rates can be estimated from both
prior and current samples (the combined approach of this paper) since Espeland
and Hui do not discuss this case.
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EspELAND and Hur (1987) make use of the fact that loglinear models can be
used to describe the miscategorization underlying a variety of types of data; they
restrict themselves to hierarchical loglinear models, however. Consider a
2 x 2 x 3 contingency table in which the first dimension represents the results of
using an accurate classifier (/), the second dimension represents the results of
using the error-prone classifier (J), and the third dimension represents the sample
(S). The first sample is from population 1, the second and third samples are from
population 2. Normally, the data for sample 3 would be incomplete (we only
observe the marginal frequencies for the error-prone classifier). However, for the
purpose of studying the structure of the problem we assume sample 3 is comple-
tely observed. The probability P (error-prone results = j | accurate results = i) is
the same for all three samples; in addition, the probabilities P(J =j) and
P(I = i) do not vary among the samples 2 and 3. The loglinear model log (count)
=T*J I'*S fits samples 1 and 2 (or samples 1 and 3) — this model corresponds
to approach 2. The same model fits samples 2 and 3 but, additionally, the more
restricted model log (count) =I*J S (corresponding to approach 1) fits these sam-
ples. We need to include both two-factor interactions if we wish to fit a hierarch-
ical loglinear model to all three samples. Thus, the additional information about
samples 2 and 3 cannot be included in the model if sample 1 is included in the
data. Use of the model with two two-factor interactions is not fully efficient.

The use of data from a variety of populations is based on the assumption that
the classification rates (P(error | actual)) have not changed from sample to sample.
This assumption is commonly made in medical applications and can be tested
using standard methods such as a likelihood ratio test.
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