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Diagnostics for multiyear tagging models with
application to Atlantic striped bass (Morone
saxatilis)

Robert J. Latour, John M. Hoenig, John E. Olney, and Kenneth H. Pollock

Abstract: Information on age- and year-specific survival can be obtained from multiyear tagging data using one of
three classes of tag recovery models. Two of the model types yield information on total survival, while the third allows
separation of total mortality into its fishing and “natural” components if information on the tag reporting rate is avail-
able. The performance of each class is usually assessed using goodness-of-fit tests, Akaike’s information criterion, and
similar measures. However, we propose that examination of model residuals is also important for the evaluation of
model performance and contend that at least four types of problems are potentially detectable via patterns in residuals.
Those presented in this paper include nonmixing of newly tagged animals, emigration of older animals, cohort effects
associated with initial tag-induced mortality or tag shedding, and a change in the natural mortality rate. We present the
diagnostic procedures by analyzing a hypothetical tagging data set and discuss the various constraints inherent to the
residuals of each class of models. The diagnostic procedures are also used to evaluate striped bass tagging (Morone
saxatilis) data from the Hudson River and Chesapeake Bay.

Résumé : Trois classes de modeles de récupération d’étiquettes permettent d’obtenir de 1'information sur la survie
spécifique a ’age ou a ’année a partir de données de marquage qui s’étendent sur plusieurs années. Deux des types de
modeles renseignent sur la survie totale, alors que le troisi®me permet de séparer la mortalité due a la p&che des
composantes « naturelles » de la mortalité, si I’on connait le taux de signalisation des étiquettes. La performance de
chaque classe de modele est généralement mesurée par des tests d’ajustement, par le critére d’information d’Akaike et
d’autres mesures similaires. Nous proposons que 1’examen des résidus des modeles est important dans 1’évaluation de
leur performance et pensons qu’au moins quatre types de problemes peuvent étre détectés par I’étude de la structure
des résidus. Les problémes signalés ici comprennent, entre autres, la répartition non aléatoire des animaux nouvelle-
ment marqués dans la population, I’émigration des animaux plus 4gés, les effets sur les cohortes de la mortalité
associée au marquage ou a la perte des étiquettes et le changement du taux de mortalité naturelle. L’analyse d’une
série de données de marquage hypothétiques illustre les méthodes diagnostiques; on y trouve aussi une discussion des
diverses contraintes associées aux résidus de chaque classe de modeles. Les méthodes diagnostiques ont aussi servi a
évaluer des données de marquage du Bar rayé (Morone saxatilis) du fleuve Hudson et de la baie de Chesapeake.

[Traduit par la Rédaction]

Introduction

The origin and development of multiyear tagging models
that allow the estimation of age- and year-specific survival
and tag recovery rates have been well documented. Early
work by Seber (1970), Robson and Youngs (1971), and
Youngs and Robson (1975) was generalized and presented
in the context of migratory bird studies by Brownie et al.
(1985). Although the Brownie models were originally ap-
plied mostly to waterfowl banding data, it has been noted

that the methodology can also be used to analyze fisheries
tagging data. Pollock et al. (1991) and Hoenig et al.
(1998a) showed that it is possible to convert tag recovery
rates to fishing exploitation rates when information on the
tag retention, tag-induced mortality, and tag reporting rate
is available. They also demonstrated that it is possible to
estimate instantaneous rates of fishing and natural mortal-
ity from fishing exploitation rates if additional informa-
tion on the seasonal distribution of fishing intensity is
known at least approximately. Hoenig et al. (1998b)
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extended the instantaneous rates formulation to allow for
nonmixing of newly tagged animals among the general
population.

Case studies that involve the application of Brownie-type
models to fisheries data are numerous in recent years
(Larson et al. 1991; Ross et al. 1995; Smith et al. 2000).
However, in many respects, the rate of theoretical develop-
ment of these models has greatly exceeded the rate at which
tagging studies that adhere to their assumptions and design
specifications are being conducted. In practice, application
of the Brownie-type models generally requires that a large
portion of the data analysis process involve investigation and
evaluation of biases due to potential violation of assump-
tions. Violation of assumptions can sometimes be attributed
to the species under study (e.g., rates of survival and tag re-
covery may not be homogeneous within years if some ani-
mals permanently emigrate from the study area) or to the
design of the tagging study (e.g., nonmixing of newly and
previously tagged animals may be problematic if tagging oc-
curs in only a few locations).

The details associated with model building and model
selection have always been widely recognized as important
for good statistical inference. However, until recently, model
selection has received little attention in most practical situa-
tions. In the realm of tagging models, two recent advances
have precipitated changes in the model selection recommen-
dations originally made by Brownie et al. (1985). Spe-
cifically, Bummham et al. (1995) advocated placing greater
reliance on Akaike’s information criterion (AIC) (Akaike
1973; Burnham and Anderson 1992) and other related mea-
sures such as quasi-likelihood AIC (QAIC) (Akaike 1985)
over likelihood ratio tests; Buckland et al. (1997) and
Burnham and Anderson (1998) suggested estimating sur-
vival as a weighted average from multiple models instead of
searching for a single “best” model.

In this paper, we build on the themes of model building
and model selection by proposing a series of diagnostic pro-
cedures that can be used in conjunction with goodness-of-fit
(GOF), AIC, and QAIC measures to assess the performance
of a model. In essence, we suggest that the fit of a model be
evaluated by critically analyzing the model residuals and
that distinct patterns in those residuals will be evident if par-
ticular assumptions are violated. We include two separate
tagging data sets in our discussion of the various patterns.
First, a hypothetical data set is used for the purposes of ex-
planation and demonstration of the diagnostics. That exam-
ple is then followed by an exploratory analysis of Atlantic
striped bass (Morone saxatilis) tagging data from the Hud-
son River, New York, and both the Maryland and Virginia
portions of Chesapeake Bay.

Review of multiyear tagging models and
assumptions

Brownie et al. (1985), Model 1

Tag return data are generally represented by an upper tri-
angular matrix of tag recoveries. For example, the matrix for
a study with [ years of tagging and J years of recovery
would be
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where r; is the number of tags recovered in year j that were
released in year i (i = 1,....I; j = 1,..,J; J = 1). Tagging peri-
ods do not necessarily have to be yearly intervals. However,
data analysis is easiest if all periods are the same length and
all tagging events are conducted at the beginning of each pe-
riod. Application of the Brownie models involves constructing
a matrix of expected values and comparing them with the ob-
served data. The matrix of expected values corresponding to
eq. 1 under Model 1 of the Brownie formulation would be
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where N; is the number tagged in year i, f; is the tag recovery
rate in year i, and S; is the survival rate in year i. Since the
data in each row of the matrix follow a multinomial distribu-
tion, the method of maximum likelihood can be used to de-
rive parameter estimates. Also, since all tagged cohorts are
assumed to be independent, the overall likelihood function is
simply the product of the individual likelihood functions
corresponding to each row of the recovery matrix (Brownie
et al. 1985; Hoenig et al. 1998a). Software packages that nu-
merically maximize the multinomial likelihood function
have been developed for application of the Brownie and
other tagging models. These include programs SURVIV
(White 1983) and MARK (White and Burnham 1999).

Seber (1970), Model 1*

Seber (1970) proposed a class of tag recovery models very
similar to those described by Brownie et al. (1985). The only
difference lies in the definition of the tag recovery rate. Spe-
cifically, Seber (1970) modeled the tag recovery rate as f =
(1 - S)r, where r is the rate at which tags are reported from
killed fish regardless of the source of mortality. Application
of the time-specific parameterization of the Seber (1970)
models, which we will refer to as Model 1%, again involves
comparing a matrix of expected values with observed data.
Program MARK can be used to numerically maximize the
product likelihood function and ultimately obtain parameter
estimates for this class of models.

Hoenig et al. (1998a), the instantaneous rates (IR) models

Hoenig et al. (1998a) reparameterized the Brownie mod-
els in terms of instantaneous rates of fishing mortality (F)
and natural mortality (M) and showed how information on
fishing effort could be used to partition total mortality into
its fishing and natural components. Application of the IR
models also involves constructing a matrix of expected re-
coveries. Under the formulation of a model that specifies
time-specific fishing mortality rates and a constant natural
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mortality rate, the matrix of expected values corresponding to eq. 1 would be

-
N OMy(F, M) N ohiuy (Fy, M)eFith)

3)  EQ)= _ N, 0hity (Fy, M)

where ¢ is the short-term probability of surviving the tagging
process with the tag intact, A is the tag reporting rate (¢ and
A are considered constant over time), and u(F,,M) is the ex-
ploitation rate in year k (u; is a function of F, and M and
depends on the seasonal pattern of fishing). When fishing
occurs continuously throughout the year with constant inten-
sity, the exploitation rate is (Ricker 1975)

0

w(Fp, M) = 7 (S

k

Again, the recapture data follow the multinomial distribution
and parameter estimates are obtained by maximizing an over-
all product multinomial likelihood function. An S-PLUS-
based program entitled AVOCADO (J.M. Hoenig et al., un-
published data) has been developed to fit this class of models.

Assumptions of multiyear tagging models

Application of the Brownie models requires making the
following assumptions (see Pollock et al. (1991, 2001) for
critical reviews of these assumptions as they relate to the
analysis of fisheries tagging data): (1) the tagged sample is
representative of the target population, (2) there is no tag
loss, (3) survival rates are not affected by tagging, (4) the
year of tag recovery is correctly reported, (5) the fate of each
tagged fish is independent, and (6) all tagged fish within a
cohort are subject to the same annual survival rate and re-
covery rate. Since development of the IR formulation was
based on the traditional Brownie models, it follows that ap-
plication of these models requires making those assumptions
outlined above. However, two additional assumptions are
also required: (7) fishing and natural mortality processes are
additive and (8) the tag reporting rate is known. In theory,
the tag reporting rate can be estimated from the tagging data
if it is constant over time. However, Hoenig et al. (1998q)
found that massive numbers of recaptures are necessary to
get reliable estimates. Hence, external information about the
tag reporting rate is often needed (e.g., from a high-reward
tagging study or catch sampling program).

Residuals of Model 1 and Model 1*

Because the diagnostic procedures that we propose in-
volve searching for patterns in the residuals, it is necessary
to briefly discuss the structure of the residuals associated
with Model 1 and Model 1*. A critical analysis revealed that
several of the residuals associated with these models are al-
ways zero. Specifically, the relationship E(r;) = ry; always
holds, regardless of the number of years of tagging and re-
covery. That is, the observed data and the expected value as-

qu)qu(F.‘/’ M)e *=t
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sociated with the (1,1) cell are always identical, which im-
plies that the residual for that cell is always equal to zero.
Further, it can be shown that the residuals associated with
the implicit “never seen again” category are also always
equal to zero (analytical proof of these properties is avail-
able from R.J. Latour). Given these characteristics, the ma-
trix of residuals derived from analyzing tag recovery data
for a study with / years of tagging and J years of recovery
under Model 1 or Model 1* takes the form

000 (r, —Ep)
(rp — E3p)

(ns — Eyy) 0.00
(rzj - E2j) 0.00

0.00
(ry — E;) 0.00

resid =

where r; is the observed number of tag recoveries and Ej; is
the corresponding expected number of tag recoveries (the
above matrix has J + 1 columns because a column has been
added on the right to account for fish that were tagged and
never recaptured). It is also true that the sum of each row
and each column of the residuals matrix must equal zero.
For the case when I = J (i.e., the recovery matrix is square),
an additional constraint that E(r;;) = r; is present. Which im-
plies that the residual for the (Z.f) cell is always equal to
Zero.

When searching for patterns in the residuals, the fact that
those values associated with the (1,1) and the “never seen
again” cells are zero essentially implies that fewer residual
values are available for inspection. For example, examina-
tion of row 1 for a pattern will involve only J — 1 residuals
rather than the J + 1 that are inherent to the model. Simi-
larly, when / = J and the recovery matrix is square, the Jth
column only contains J — 1 residuals that can be scrutinized
for a pattern. Having fewer available residuals is not overly
problematic; rather, it just implies that conclusions about the
existence of patterns may be based on fewer values. With the
exception of the row sums having to be zero, the residuals
given by program AVOCADOQ for all parameterizations of
the IR models are not subject to the aforementioned con-
straints.

Diagnostic procedures

When fitting a multiyear tagging model, it is important to
determine if any of the underlying assumptions have been
violated. If model assumptions are not supported by the
data, then it is likely that parameter estimates obtained from
the analysis will be unreliable. One approach for evaluating
model fit involves comparing the observed and expected
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Table 1. Hypothetical perfect data generated by arbitrarily
choosing §, = 0.66, S, = 0.70, S = 0.67, S, = 0.63, f, = 0.11,
f>=0.09, f3 =0.10, f, = 0.13, and f5 = 0.11 under Model 1 or,
alternatively, Fy = 0.27, F, = 0.21, F3 = 025, F, = 0.32, F5 =
0.26, M = 0.15, and ¢A = 0.50 under-the IR formulation with
continuous fishing throughout the year.

Number recaptured in year

Year Number tagged 1 2 3 4 5

1 1100 121 64 52 43 23
2 950 84 68 57 30
3 845 87 72 38
4 1020 130 68
5 990 106

Note: The recoveries were rounded to the nearest whole number.
Consequently, the residuals from fits of Model 1 and an IR model are not
exactly zero, but the largest residual in absolute value was less than 0.40.

numbers of tag recoveries. This comparison constitutes the
basis for the formal GOF test, which is used to test the null
hypothesis that the model fits the data. Although the GOF
test is informative, rejection of the null hypothesis does not
provide any information about why the model does not fit
the data or which assumption(s) is (are) possibly in viola-
tion. Also, failure to reject the null hypothesis of a good fit
does not necessarily imply that all assumptions are met. We
propose a more systematic approach for assessing model
performance and suggest that certain patterns in model re-
siduals can be indicative of particular assumption violations.

Example 1. Explanation of diagnostics using a
hypothetical perfect data set

For the purposes of explanation and demonstration, a hy-
pothetical perfect data set (i.e., the observed number of tag
recoveries is equal to the expected number of tag recoveries)
that reflects 5 years of tagging and recovery was created (Ta-
ble 1). The expected values were generated under Model 1
with arbitrarily chosen parameter values S; = 0.66, S, =
0.70, 3 =0.67, S4 = 0.63, f; = 0.11, £, = 0.09, f3 = 0.10, f, =
0.13, and f5 = 0.11. The data in Table 1 can also be gener-
ated under the IR formulation with parameter values F, =
0.27, F, =021, F3 = 0.25, F, = 0.32, F5 = 0.26, M = 0.15,
and the product ¢A = 0.50 assuming that fishing is continu-
ous throughout the year.

To demonstrate the patterns in model residuals that develop
when particular assumptions are violated, the true recovery
matrix was modified to simulate five specific scenarios:
nonmixing, emigration from the study area (a form of hetero-
geneity), tag-induced mortality, a change in the natural mor-
tality rate, and a change in the tag reporting rate (note that
this is only an assumption violation of the IR model). Since
analysis of the unmodified data produces residuals exactly
equal to zero, fitting a model to each of these modified data
sets explicitly reveals the patterns in residuals that arise when
a particular assumption is violated. When applicable, Model
1, Model 1%, and a time-specific IR model (assuming the
product oA = 0.50) were fit to the data using programs
MARK and AVOCADO. In all cases, the patterns evident in
the residuals of Model 1 were also expressed in those of
Model 1*, Hence, we only refer to the residuals of Model 1
and the IR model in the discussion that follows. Also, we do
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not discuss in detail the change in tag reporting rate scenario,
since it was not possible to detect violation of this assumption
via a pattern in the residuals of the IR model.

Nonmixing

This constitutes violation of assumption 1, where newly
tagged fish are not thoroughly mixed with previously tagged
fish. Nonmixing of newly tagged fish among cohorts can re-
sult from a lack of dispersal (i.e., clustering) immediately af-
ter tagging. It may be that the natural migratory behavior of
the species under study is such that dispersal and mixing of
a released cohort of tagged fish requires more time than that
defined by the tagging period of the analysis.

In their discussion of nonmixing, Hoenig et al. (1998b) in-
tentionally modified the lake trout tagging data from Cayuga
Lake, New York (Youngs and Robson 1975), to simulate a
nonmixing scenario. A similar approach was adopted here to
create a nonmixing situation with the recovery data in Ta-
ble 1. Specifically, the number of recaptures along the main
diagonal were multiplied by two thirds to simulate a situa-
tion where the exploitation rate of newly tagged fish is two
thirds that of previously tagged fish (Table 2a). Since the
survival rate in the year of tagging is higher, the number of
recaptures in subsequent years had to be adjusted upwards.
To do so, the natural mortality rate and fishing mortality
rates associated with the original data were used to calculate
a cohort-specific exploitation rate for each year of tagging.
New fishing mortality rates, F*, that reduced the exploita-
tion rates to two thirds of their original value were identified
through an iterative process. For each row of the recovery
matrix, all entries to the right of the main diagonal were then
multiplied by the ratio of survival rates (i.e., exp(F; — F}¥),
where F; is the original fishing mortality rate).

The fit of both Model 1 and the IR model to the data in
Table 24 is extremely poor, as evident from the results of the
GOF test (Model 1: x24 = 18.23, p < 0.006; IR model:
X3¢ = 20.2, p < 0.02). However, an alternative indication
that both models fit poorly is given by the consistently nega-
tive residuals on the main diagonal and positive residuals on
the super diagonal of the residuals matrix for each model
(Table 2b). It is clear that the residuals from both models
possess the pattern; however, the restrictions that the (1,1)
and (/,7) residuals of Model 1 are always zero forces the de-
termination of the pattern to be based on fewer cells. Since
the residuals of the IR model do not posses those same con-
straints, the negative pattern on the main diagonal is more
obvious.

If newly tagged fish tend to remain clustered after they are
released, the distribution of those individuals will be differ-
ent from that of those that were tagged on prior sampling
occasions. Suppose tagged fish are released in areas that are
not prime fishing locations. Then newly tagged fish will be
less available to fishers. A model that assumes that all
tagged cohorts are well mixed cannot account for the re-
duced availability of newly tagged fish. Hence, the number
of observed tag recoveries will be consistently smaller than
the expected number of tag recoveries in the year of tagging,
and a pattern of negative residuals will emerge on the main
diagonal. Since nonmixing in this case causes the survival
rate in the year of tagging to be abnormally high, there will
be more tagged fish available for harvest in later years. A
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Table 2. Tagging data from Table 1 modified to simulate incomplete mixing in the year of tagging, and residuals
from fitting Model 1 and an IR model (residuals for the IR model in parentheses).

(@) Hypothetical data modified to simulate nonmixing in the year of tagging®

Number recaptured in year

Year Number tagged 1 2 3 4 5
1 1100 81 70 57 48 25
2 950 56 74 61 32
3 845 58 79 41
4 1020 87 77
5 990 70
(h) Model residuals from fitting Model 1 and an IR model
Number recaptured in year
1 2 3 4 5 Never seen
0.00 (-0.62) 10.43 (9.25) 1.13 (-0.74) -3.67 (-5.79) —7.88 (-7.94) 0.00 (5.83)
-10.43 (-9.65) 11.70 (11.60) 3.39 (2.87) —4.66 (-3.60) 0.00 (-1.22)
-12.83 (-10.60) 13.50 (15.09) —0.68 (1.86) 0.00 (-6.35)
-13.22 (-11.21) 13.22 (16.86) 0.00(-5.66)
0.00 (-7.17) 0.00 (7.17)

“Exploitation of newly tagged fish was assumed to be two thirds that of previously tagged fish (see text for a full description of

the modified data).

model that assumes complete mixing among tagged cohorts
cannot adjust for an increase in availability of tagged fish in
later years. Hence, the expected number of tag recoveries on
the super diagonal will be abnormally low and consistently
positive residuals will emerge (note that if newly tagged ani-
mals are released in areas that are intensely fished, the oppo-
site pattern will appear with the main diagonal having
positive residuals).

Hoenig et al. (1998b) showed that the presence of
nonmixing can lead to seriously biased parameter estimates
if a model that assumes that all tagged cohorts are well
mixed is used for data analysis. Further, they demonstrated
how to model nonmixing explicitly using the IR formulation
and pointed out that the Brownie models cannot be para-
meterized to account for this potential problem. The detec-
tion of nonmixing is certainly not trivial. Data inspection
cannot be used, and it is not always possible to determine if
the study design itself will facilitate proper dispersal of
tagged fish (see Bertignac et al. (1999) for an example of
how the availability of the tagged population changes over
time). To assist with this problem, Latour et al. (20015) de-
veloped a simple test for nonmixing that can be applied prior
to any data analysis if tag recovery locations are known.

Emigration

This constitutes violation of assumption 6 where survival
or rate of disappearance among tagged fish within a cohort
is variable in a particular year. This can occur if, for exam-
ple, a tagged cohort comprises several age groups and older
tagged fish commence a migratory pattern that causes them
to permanently leave the study area. This can also occur if
the various age groups of fish within a tagged cohort exhibit
different rates of chronic tag loss due to tag fouling and (or)
degradation (see Henderson-Arzapalo et al. (1999) for a dis-
cussion of tag degradation) or suffer an increase in mortality
due to senility.

Emigration was introduced into the recovery data in Ta-
ble 1 by postulating that any changes in mortality due to

movement only occur after a cohort of tagged fish has been
at liberty at least 2 complete years. To simulate a scenario in
which emigration increases over time, the number of recap-
tures in recovery years 3, 4, and 5 was reduced by 20, 30,
and 40%, respectively, for the cohorts that were affected
(Table 3a). Essentially, manipulation of the recovery data
involved adjusting the number of recaptures along diagonals
in the upper right corner of the matrix. Hence, the recoveries
associated with cohorts 4 and 5 were unchanged in this sce-
nario.

Unlike the nonmixing scenario, the GOF tests associated
with both models suggest that the model fit is adequate
(Model 1: x24 = 2.15, p < 0.91; IR model: X3y = 2.35, p <
1.00). However, definitive patterns in the residuals from both
models are apparent. In particular, the residuals correspond-
ing to the diagonals in the upper right comer of the matrix
(excluding the “never seen again” column) are predomi-
nately negative (Table 3b). Since the oldest tagged fish are
generally those that are tagged at the beginning of the study
and recaptured near the end of the study, it follows that there
would be fewer recaptures along the diagonals in the upper
right corner of the matrix if age-related emigration from the
study area is evident. Consistently fewer observed than ex-
pected recoveries in that particular corner of the matrix will
clearly cause the residuals to be negative. It should also be
noted that the patterns discovered with the nonmixing sce-
nario are also present in Table 3. Although this suggests that
violation of assumptions 1 and 6 may be indistinguishable,
the presence of negative residuals on both the main diagonal
and the upper right corner of the residuals matrix is indica-
tive of a problem that the GOF test was unable to detect. In
this situation, questions should be asked about the study de-
sign (e.g., is tagging occurring in a few proximal locations
or many disparate locations) and the life history of the spe-
cies (e.g., at some point, will the species take on a migratory
pattern that causes it to leave the study area) to identify the
nature of the problem,.

To account for possible senescence and emigration, a re-
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Table 3. Tagging data from Table 1 modified to simulate emigration/senescence after years at liberty, and re-
siduals from fitting Model 1 and an IR model (residuals for the IR model in parentheses).

{@) Hypothetical data modified to simulate emigration/senescence of

older animals®

Number recaptured in year

Year Number tagged 1 2 3 4 5

1 1100 121 64 47 35 16
2 950 84 68 51 24
3 845 87 72 34
4 1020 130 68
5 990 106

(b) Model residuals from fitting Model 1 and an IR model

Number recaptured in year

1 2 3 4 5 Never seen
0.00 (-0.18) 3.67 (3.56) 1.19 (-1.55) -1.40 (-1.82) -1.08 (-1.02) 0.00 (1.00)
-3.67 (-3.89) 5.22 (4.67) -0.64 (-1.26) -0.92 (-0.84) 0.00 (1.31)
—4.03 (-3.15) 5.81 (6.14) —~1.78 (-1.08) 0.00 (-~1.92)

=377 (-2.48) 3.77(5.47) 0.00(-2.98)

0.00 (-2.49) 0.00 (2.49)

“The number of recaptures in recovery years 3-5 was reduced by 20, 30, and 40% for animals at large for 3, 4, and 5

years, respectively.

cent innovation known as the “chop” option has been devel-
oped (Latour et al. 20014). Essentially, the data in the upper
right corner of the recovery matrix are ignored by adding
those recaptures to the “never seen again” column. This will
correct for some bias due to violation of assumption 6; how-
ever, subsequent parameter estimates may be less precise,
since estimation is based on fewer overall data.

Tag-induced mortality

This constitutes violation of assumption 3 and an element
of assumption 2, where the survival of a particular cohort of
tagged fish is substantially reduced by the tagging process or
tags are lost shortly after tagging. This can occur if the tag-
ging crew changes and new members do not have much ex-
perience handling or tagging fish.

To simulate the effects of tag-induced mortality or imme-
diate loss of tags due to tagging inexperience in year 2, the
recaptures in Table 1 corresponding to cohort 2 were re-
duced by 20% in each recovery year (Table 4a). As with the
emigration scenario, data analysis yielded GOF test statistics
that were quite small (Model 1: %24 = 0.34, p < 1.00; IR
model: X34 = 2.28, p < 1.00), which implies that both mod-
els fit the data well.

Because simulation of tag-induced mortality involved re-
ducing the number of recaptures associated with cohort 2, it
is reasonable to speculate that the effects of excessive tag-
induced mortality would cause the residuals corresponding
to the recaptures of cohort 2 to all be negative in both mod-
els. Although this is the case with row 2 of the IR residuals
matrix, the same was not found with that of Model 1 (Ta-
ble 4b). Since the residuals corresponding to the “never seen
again” cells of Model 1 are always zero, and since each row
sum of the residuals matrix must total zero, Model 1 cannot
express a row pattern. Hence, from a diagnostics perspec-
tive, the constraints associated with the residuals of Model 1
render it very difficult to detect assumption violations that
are cohort specific.

The residuals of the IR model are much more informative
than those of Model 1 for the detection of assumption viola-
tions that are cohort specific. As with the residuals of Model
1, the row sums of the IR residuals matrix must also total
zero. However, since the residuals associated with the “never
seen again” cells of the IR model can assume positive or
negative values, the expression of distinct row patterns is
possible. This freedom makes it possible for the residuals of
the recovery-year cells specific to a single cohort to all take
on values of the same sign (i.e., the “never seen again” re-
siduals can adjust for the row patterns). This is evident in
Table 4b, since rows 1, 3, and 4 all possess positive recovery-
year residuals and, as expected under the current scenario,
row 2 possesses all negative residuals (row 5 is uninforma-
tive since it contains only one residual corresponding to a re-
covery year).

A change in the natural mortality rate

In theory, the class of models developed by Hoenig et al.
(1998a) can be parameterized in terms of year-specific fish-
ing and natural mortality rates. However, the desire for a
parsimonious model often creates a need to assume that M is
constant over time and over recruited ages in fisheries as-
sessments. In spite of this, it is certainly possible for M to
vary over time, since extreme seasonal temperatures, limita-
tion of nutrients, and (or) pollution effects could all cause M
to increase in a particular year.

To simulate the effects of a variable M, the recaptures in re-
covery year 5 of Table 1 were adjusted to reflect an M value
of 0.45 (Table 54). Even though the GOF test suggests that
the fit of the IR model with a constant M is adequate (X34 =
12.2, p < 0.20), a distinct pattern of negative residuals is pres-
ent in column 5 of the residuals matrix (Table 5b). The in-
crease in M caused the number of recaptures in column 5 of
Table 1 to decrease. This is not surprising, since a higher M
essentially implies that fewer tagged fish will be available to
fishers. By assuming that M is constant over time, the IR
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Table 4. Tagging data from Table 1 modified to simulate tag-induced mortality/tag loss, and residuals from fitting
Model 1 and an IR model (residuals for the IR model in parentheses).

(@) Hypothetical data modified to simulate tag-induced mortality/tag loss

endured by cohort 2¢

Number recaptured in year

Year Number tagged 1 2 3 4 5

1 1100 121 64 52 43 23

2 950 67 55 45 24

3 845 87 72 38

4 1020 130 68

5 990 106

(b) Model residuals from fitting Model 1 and an IR model

Number recaptured in year

1 2 3 4 5 Never seen

0.00 (3.35) 0.08 (7.43) -0.08 (4.23) -0.14 (2.99) 0.24 (1.93) 0.00 (-19.92)
-0.08 (-9.08) 0.24 (-9.25) -0.27 (-8.81) 0.12 (4.34) 0.00 (31.48)

—0.06 (4.29) 0.03 (2.72) 0.03 (1.52) 0.00 (-8.54)
0.38 (3.04) -0.39 (1.14) 0.00(—4.18)
0.00 (-0.30) 0.00 (0.30)

“The number of recaptures corresponding to cohort 2 in recovery years 2-5 was each reduced by 20%.

Table 5. Tagging data from Table 1 modified to simulate a change in the natural mortality rate
M, and residuals from fitting an IR model that assumes that M is constant.

(a) Hypothetical data modified to simulate a change in M“

Number recaptured in year

Year Number tagged 1 2 3 4 5

1 1100 121 64 52 43 6
2 950 84 68 57 11
3 845 87 72 18
4 1020 130 44
5 990 92

(b) Model residuals from fitting Model 1 and an IR model

Number recaptured in year

1 2 3 4 5 Never seen
2.02 343 4.86 6.41 -5.16 -11.56
-2.05 1.03 5.01 —4.85 0.87
-6.24 -0.38 —4.07 10.68
-14.64 -0.10 14,74
13.98 -13.98

“The value of M was increased from 0.15 to 0.45 in year 5.

model cannot account for the systematically fewer recaptures
in recovery year 5, and the residuals associated with that re-
covery year are consistently negative (in cases where M de-
creased in a particular year, a column pattern of positive
residuals would emerge). It should be noted that the change in
M precipitated the development of row patterns. Specifically,
the residuals in row 1 are consistently positive and the residu-
als in rows 3 and 4 are strictly negative.

Subtle changes in M do not readily create column patterns
in the matrix of residuals. Simulations where M was only
slightly changed in a particular year failed to produce con-
sistent patterns of negative or positive residuals. Since the
detection of a change in M is not trivial, we suggest that

year-specific auxiliary data (e.g., prey indices, water
temperature, etc.) be used in combination with examination
of residuals to determine the likelihood of a change in M.

Sensitivity of diagnostics under the IR formulation
Because the partition of total mortality into its fishing and
natural components is sensitive to the estimate of ¢A (Latour
et al. 2001a), we varied the value of ¢A to determine if the
aforementioned patterns in residuals were apparent under
conditions when the true and assumed values of ¢\ were
substantially different. Since the hypothetical data were gen-
erated with a value of 0.50 for oA, we reanalyzed the data
associated with the nonmixing, emigration, tag-induced mor-
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Table 6. Tag recovery data for striped bass >711 mm total length that were tagged in the Rappahannock River, Virginia, and residuals

from fitting Model 1*.

(a) Release and recovery data for striped bass in the Rappahannock River, Virginia

Number Number recaptured in year
Year tagged 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999
1988 56 7 7 4 1 0 2 0 0 0 1 0 0
1989 101 4 4 3 3 0 2 0 0 0 1 0
1990 300 26 9 15 2 3 7 1 0 2 1
1991 390 41 24 16 11 3 2 2 1 2
1992 40 4 3 2 2 0 0 0 1
1993 212 22 18 7 5 6 0 0
1994 123 9 7 5 1 2 0
1995 209 28 10 8 3 3
1996 66 1 3 1 0
1997 212 15 13 8
1998 158 24 13
1999 162 16
(b) Residuals from fitting Model 1*
Number recaptured in year
1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 Never seen
0.00 341 1.32 -0.46 0.00 1.42 0.00 0.00 0.00 0.91 0.00 0.00 455
~-3.41 -1.53 0.00 0.72 0.00 1.08 0.00 0.00 0.00 0.88 0.00 4.55
0.21 -5.01 4.33 -3.59 -1.30 4.16 -0.09 0.00 1.45 0.67 0.00
5.47 -3.06 1.81 0.09 4.6 -0.75 -0.12 -041 1.17 0.00
-0.89 0.44 0.03 0.70 0.00 0.00 0.00 0.85 0.00
1.12 193  -3.59 0.947 2.88 0.00 0.00 0.00
-1.39 0.15 2.38 -1.02 0.66 0.00 0.00
3.66 0.69 0.83 -1.77 0.19  -3.60
-2.33 044  -0.70 0.00 3.60
-2.51 1.37 1.15 0.00
092 -059 032
-0.32 0.32

tality, and variable M scenarios using values of ¢A that
ranged from 0.30 to 0.80.

For all values of ¢A considered, the patterns in residuals
associated with each scenario remained evident. In fact, for
the nonmixing and emigration cases, a cell-by-cell compari-
son of the matrices of residuals showed that the signs of all
residuals remained unchanged. The same cell-by-cell preser-
vation of positive and negative residuals was predominately
evident when the tag-induced mortality and variable M re-
siduals matrices were compared. For the tag-induced mortal-
ity scenario, the only differences were with row 5 of the
A = 0.60, 0.70, and 0.80 scenarios. In all three instances,
the residual associated with recovery year 5 was negative
and the corresponding “never seen again” residual was posi-
tive (the exact opposite pattern is present in row 5 of the
dA = 0.50 residuals matrix). For the variable M scenario, the
only differences were when ¢\ = 0.30 and 0.40, since three
of the five residuals in column 5 were negative instead of
four out of five.

Example 2. Exploration of Atlantic striped bass tagging
data

The Atlantic striped bass has historically supported sev-
eral important recreational and commercial fisheries along
the eastern coastline. During the 1960s and 1970s, overfish-

ing, pollution, and reduction of spawning habitat precipi-
tated steady declines in the abundance of virtually all stocks
in the Atlantic. In response to the documented decline, the
Atlantic States Marine Fisheries Commission sponsored the
development of an interstate fisheries management plan that
took effect during the mid-1980s. The fisheries management
plan called for the establishment of a cooperative tagging
program (which currently involves 15 state and federal
agencies) so that information on migration, relative contribu-
tion to the coastal population, and annual survival of Atlan-
tic striped bass stocks could be evaluated. At present, the
agencies participating in the cooperative tagging program
continue to tag thousands of striped bass each year.

The current protocol to analyze the tagging data, as estab-
lished by the Atlantic States Marine Fisheries Commission
Striped Bass Technical Committee, involves deriving sur-
vival estimates from a suite of Seber (1970) models. Tag re-
coveries from striped bass that were >711 mm total length at
the time of tagging are analyzed because they constitute the
migratory population and are believed to be fully recruited
to the coastal fishery. The analysis consists of four steps.
First, a set of biologically reasonable candidate models is
identified prior to the data analysis. These models are then
fit to the tagging data, and AIC and GOF diagnostics are
used to evaluate their fit (Burnham et al. 1995). The overall
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Table 7. Residuals from fitting Model 1* to striped bass tagging data from the Maryland portion of Chesapeake Bay (1988-1997), and
residuals from fitting Model 1* to striped bass tagging data from the Hudson River, New York (1988-1997).

(@) Residuals from fitting Model 1* to the Maryland striped bass tagging data

Number recaptured in year

1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 Never seen
0.00 3.17 -1.08 5.97 0.35 -0.29 0.53 0.00 0.00 0.00 -6.12
-3.17 0.84 1.71 -0.49 -0.07 0.39 2.65 0.73 0.00 -1.76
0.24 -6.00 0.46 -0.99 -1.84 0.55 0.00 1.65 7.79
-1.68 ~-1.11 5.13 -2.90 0.01 -1.32 1.88 0.00
0.78 -0.61 -2.80 -0.17 0.33 2.46 0.00
-3.17 5.45 2.62 -6.69 1.79 0.00
1.17 -1.02 0.26 -0.41 0.00
-3.32 0.15 3.17 0.00
9.11 -9.11 0.00
0.00 0.00
(b) Residuals from fitting Model 1* to the Hudson River striped bass tagging data
Number recaptured in year
1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 Never seen
0.00 1.52 -1.30 1.79 2.39 0.09 2.42 0.00 1.63 1.02 —7.68
-1.52 -1.02 -0.59 —4.63 -0.52 2.06 2.12 0.00 0.00 7.68
2.32 -0.51 4.25 0.31 -2.70 -0.64 =3.11 0.08 0.00
-0.69 0.15 -3.63 1.23 1.85 1.79 -0.70 0.00
-2.16 1.07 0.16 -0.84 -1.92 3.70 0.00
2.68 1.20 -6.21 -0.11 2.44 0.00
—4.38 -1.22 1.79 3.81 0.00
6.82 -3.40 -3.42 0.00
5.43 -5.43 0.00
0.00 0.00

estimates of survival are then calculated as a weighted aver-
age of survival from the best-fitting models, where the
weight is related to the AIC value (i.e., the better the AIC,
the higher the weight) (Buckland et al. 1997; Burnham and
Anderson 1998; Smith et al. 2000).

We examined the residuals associated with the application
of Model 1* to striped bass tagging data from the Hudson
River, New York, the Maryland portion of Chesapeake Bay
(see Smith et al. (2000) for the data from those regions) and
the Rappahannock River, Virginia (Table 6a), to determine if
model assumptions were in violation. In each of the three re-
siduals matrices, the symptoms associated with a nonmixing
or emigration problem were not present (Tables 65 and 7).
The lack of nonmixing with the Rappahannock River data is
consistent with the findings of Latour et al. (20015), who
performed a spatial analysis of the tag recoveries. Given the
migratory behavior of striped bass >711 mm total length,
this result is not surprising and it seems likely that a similar
spatial analysis of the New York and Maryland data would
also show that lack of mixing is not problematic. Emigration
should also not be problematic, since the recovery areas for
all three analyses encompass the entire eastern seaboard.

Inspection of the “never seen again” columns of the three
residuals matrices does suggest that there are cohort-specific
problems with the application of Model 1*. For the Virginia
data, the residuals associated with the “never seen again”
category of rows 1, 2, 8, 9, 11, and 12 were nonzero (Ta-
ble 6b). A more detailed examination of the recovery data
for the cohorts tagged in 1988 and 1989 showed that in
1989, there were approximately twice as many fish tagged as

in 1988, but comparatively, only about half the number of
tag recoveries were observed each year from the 1989 co-
hort. Since the data in rows 1 and 2 of the recovery matrix
are needed for the estimation of S, it seemed likely that the
problem would also be apparent with the estimate of S,. Al-
though there was nothing unusual about the estimate of §,
from Model 1* (S, = 0.88), application of Model 1 (via pro-
gram MARK) to the data in Table 6a yielded an estimate of
exactly 1.00 for §,. This estimate resulted because the pro-
gram was forced to impose the constraint that all survival
estimates must be between 0.00 and 1.00 during the estima-
tion process.

Hand calculation of the estimate for S, under Model 1
from the analytical formula of the maximum likelihood esti-
mate given by Brownie et al. (1985) yielded a value of 1.59
for S,. (If the identity link in program MARK is used with
Model 1, then hand calculations are not needed because
MARK will provide the appropriate maximum likelihood es-
timates and residuals for situations where inadmissible sur-
vival estimates arise. However, the identity link does not
work with Model 1* because the term (1 — S) appears di-
rectly in the likelihood, and negative probability values are
generated when inadmissible survival estimates arise.)
Clearly, a survival probability cannot exceed 1.00, and the
fact that the data yield an inadmissible value under Model 1
suggests that there is a problem with the 1989 cohort. Since
a hand calculation of Sg yielded an estimate of 1.68, it ap-
pears that there is also a problem with the 1996 cohort.
However, in 1996, only 66 fish were tagged, and only a total
of five recoveries were tabulated over the 4 years that the co-
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hort was at liberty. Hence, the noted problem with Sg and
the 1996 cohort may be a result of sparse data. It is unclear
why the “never seen again” residuals in rows 11 and 12 are
nonzero, since hand calculation of S, yielded a value of
0.89. Perhaps the constraints imposed for the estimation of
S, and Sg caused problems with the estimation of other pa-
rameters (it is unclear how the estimation process is affected
when boundary values are reached).

For the Maryland data, the residuals associated with the
“never seen again” category of rows 1-3 were nonzero (Ta-
ble 7a). The estimates of S; and S, from Model 1* were high
(S; =0.96 and S, = 0.94), but given the fact that striped bass
in Maryland were under moratorium until 1990, high rates
of survival for 1988 and 1989 should be expected. However,
application of Model 1 yielded estimates of exactly 1.00 for
S, and S, and hand calculations of S, and S, yielded values
of 1.10 and 1.11, respectively. These results are nonsensical
and they suggest that there may be problems with the 1989
and 1990 cohorts. This same trend was also apparent with
the New York data, since the “never seen again” residuals
associated with rows 1 and 2 were nonzero (Table 7b). Again,
the estimate of S, from Model 1* was high (S, = 0.90), but the
hand calculated value under Model 1 was 1.06, which again
suggests that there may be a problem with the 1989 cohort.

Examination of the residuals matrices (not shown here)
associated with application of an IR model to each of the re-
covery matrices confirmed the noted cohort-specific prob-
lems. For the Virginia data, rows 2 and 8 of its residuals
matrix revealed negative residuals for eight out of 11 and
four out of four values, respectively. For the New York data,
nine out of 10 residuals in row 1 were positive, while seven
out of nine residuals were negative in row 2. For the Mary-
land data, row 3 of the residuals matrix showed a distinct
pattern, since seven out of eight values were negative. Pat-
terns in rows 1 and 2 were slightly less apparent, since seven
out of 10 and five out of nine residuals were positive, re-
spectively.

Discussion

We have shown that specific patterns in the residuals of
multiyear tagging models arise when particular assumptions
are violated. In particular, patterns along the main and super
diagonals are evident when nonmixing is problematic, and
patterns of consistently negative residuals are present in the
upper right corner of the residuals matrix when the survival
or rate of disappearance among tagged fish within a cohort
is variable because of emigration. Although the patterns in
residuals associated with emigration seem to be indistin-
guishable from those of nonmixing, the two phenomena are
generally separable if the sampling design and the life his-
tory of the species under study are critically examined to de-
termine which is more likely to be evident in the study. The
presence of distinctive row patterns in the residuals matrix is
indicative of short-term tag-induced/handling mortality and
tag loss. A change in the natural mortality rate can cause a
column effect of the IR model residuals.

An inspection of the residuals matrix for patterns should
accompany the more traditional measures of model fit (e.g.,
AIC and GOF) as fundamental parts of evaluating the per-
formance of multiyear tagging models. In addition to consid-
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ering multiple model parameterizations, the analysis of tag-
ging data should also involve all available model types (i.e.,
Brownie et al. (1985) and Hoenig et al. (1998a, 1998b)
models) regardless of the goal of the study or the desired pa-
rameters estimates. Application of a suite of model types to
tagging data increases the amount of information that can be
used for the evaluation of assumption violation. The value of
this approach is particularly exemplified by the fact that the
residuals of the IR models do not possess the constraints as-
sociated with those of Model 1 and Model 1*. The symp-
toms of nonmixing are certainly more definitively expressed
in the residuals of an IR model, since the values in the (1,1)
and (I,1) cells (when I = J) need not be zero. Also, the freedom
of nonzero “never seen again” residuals allows the IR models
to accurately capture the row patterns in the residuals matrix
that emerge when cohort-specific problems are present.

The conclusions about the existence of patterns in model
residuals for the simulated scenarios were based strictly on
the sign of the value. It may also be possible to detect the
same patterns and information pertaining to the relative
magnitude of each residual by examining standardized resid-
uals. For multiyear tagging models, a standardized residual
is defined as dj; = (O - E;) / E;(L- E;/N;), where O
and E;; represent the observed and fitted values, respectively.
Consideration of the relative magnitude of model residuals
can assist with the detection of outliers. If a model fits a par-
ticular data set well, then the standardized residuals should
only rarely be greater than 2-3. Many large standardized re-
siduals is indicative of overdispersion. If the variance in the
data is greater than the theoretical variance predicted by the
multinominal distribution, then overdispersion is present.
This implies that the calculated standard errors generated
from software packages for the analysis of tagging data
(e.g., programs SURVIV and MARK) are generally overly
optimistic about precision.

Examination of the residuals associated with the analysis
of each striped bass recovery matrix revealed the presence of
cohort-specific problems. The nonzero “never seen again”
residuals in rows 1 and 2 of each residuals matrix were
caused by the same counterintuitive trend. For each stock,
approximately the same or fewer tags were recovered from
the 1989 cohort than from the 1988 cohort even though sig-
nificantly more fish were tagged in 1989. Based on the data,
it appears that the number of striped bass effectively tagged
in each state is substantially different from the actual num-
ber tagged in 1989. The most obvious explanation is short-
term tagging mortality and (or) tag loss, and since the
striped bass tagging program began in 1988, it is possible
that inexperience with the sampling and tagging procedures
(which would likely be present for all state agencies) al-
lowed these phenomena to be present in the study. An alter-
native explanation is that perhaps the natural mortality rate
of the fishes tagged in 1989 increased substantially due to
some type of large-scale cohort-specific environmental or bi-
ological effect.
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