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ABSTRACT

The pesticide policy arena is filled with discussion of probabilistic approaches to assess ecological risk, however, similar
discussions about implementing formal probabilistic methods in pesticide risk decision making are less common. An influence
diagram approach is proposed for ecological risk-based decisions about pesticide usage. Aside from technical data, pesticide
risk management relies on diverse sources, such as stakeholder opinions, to make decisions about what, how, where, and when
to spray. Bayesian influence diagrams allow multiple lines of evidence, including process related information from existing data
and expert judgment, in 1 inclusive decision model. In ecological risk assessments, data informally incorporated for pesticide
usage decisions, such as field and laboratory effect studies along with chemical monitoring and modeling data, can be formally
incorporated and expressed in linked causal diagrams. A case study is presented from the perspective of an environmental
manager wishing to efficiently control pests while minimizing risk to local aquatic receptors. Exposure modeling results and
toxicity studies were incorporated, and an ecological risk assessment was carried out but combined with hypothetical
information on spraying efficacy and valuation of outcomes that would be necessary for making risk management decisions.
The variables and their links in the influence diagram are ones that are important to a manager and can be manipulated to
optimally control pests while protecting nontarget resources. Integr Environ Assess Manag 2012;8:339-350. © 2011 SETAC
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INTRODUCTION

This article provides guidance on using decision analysis
with influence diagrams (IDs) for pesticide risk management
decisions. The ID created in this article illustrates how a
quantitative tool can be constructed for causal inference and
to increase understanding in pest control management. The
ID will focus on what is valuable and how to obtain value in
decision outcomes through the generation and selection of
alternatives and their measures. Pesticide management can be
largely alternative-driven, with a focus on regulatory actions
(e.g., modifying or prohibiting uses, finding an alternate
means of pest control). The approach used to generate the ID
will be value-focused (Keeney 1992) to prioritize what is
important and generate or select alternatives that realize
outcomes of value. The IDs will also be used to frame and
model the uncertainties in the decision process.

Having a decision-making system that can weigh evidence
and adapt to change becomes necessary as one examines
current decision-making trends in environmental manage-
ment. Collaborations in environmental projects can span
federal, state, local, and tribal governments and include
industry, academic, and citizen groups. Many lines of
evidence need to be considered in an environmental manage-
ment task, along with differing viewpoints and interpretations
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Decision analysis

Pesticide risk management

(Burger 2002). The environmental decision process can take
many years, requiring provisional goals and careful planning
to arrive at valid conclusions. Thus, the process that goes into
making integrated environmental management decisions
should be carefully analyzed and understood. Because of the
magnitude of some environmental problems, weighing the
costs and benefits of management actions might seem to be a
formidable task. However, considering the many impacts for a
decision can prevent undesirable consequences from know-
able circumstances.

Complexity of environmental risk management problems

The risk assessment is a significant factor in the decision-
making process for pesticide use (USEPA 1995). Scientists,
regulators and courts of law accept the US Environmental
Protection Agency’s practice of considering factors beyond
risk assessment results during decision making (USEPA
2004). Risk management does not rely solely on technical
data for a decision. Scientific input should be regarded as an
important asset in the decision process but not the entire
foundation for decisions (Cortner 2000). Like other environ-
mental management problems (e.g., penalty and incentive
development for greenhouse gas emissions, industrial chem-
ical safety management, invasive species eradication, con-
taminated habitat cleanup), many sources of information
must be drawn upon to reach a decision. Economic, social,
political, and legal considerations go into pesticide manage-
ment decisions (USEPA 1995). These considerations include
economic costs and benefits, the susceptibility and inclination
of populations at risk, technological capabilities, legal issues,
and societal values (USEPA 2004). At the scope of the United
States federal government, as well as a state regulatory body,
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risk management decisions with pesticides undoubtedly affect
a number of stakeholders and must consider a variety of
sources of values and technically based information.

Figure 1 illustrates some factors that go into a pesticide risk
management decision, the types of decisions made, and the
groups affected by the decision. Understanding what is
important in making a pesticide risk management decision is
a multidisciplinary task requiring expert input and analysis
from many different fields. With the difficulty of under-
standing and weighing all factors effectively before choosing
an action plan, application of an appropriate formal decision
analysis to pesticide risk management might provide better
solutions.

Introduction to Bayesian belief networks and influence
diagrams

Bayesian statistics apply prior probabilities and likelihoods
to produce posterior probabilities. The prior probability
expresses what is believed to be true about a state for a
variable and/or can be built on past experimentally derived
evidence. The likelihood comes into play with new evidence
and is the probability of that evidence given a potential value
for the variable in question. Bayes’ theorem is used to adjust
the prior probabilities with the likelihood function to obtain a
posterior probability distribution (Morgan 1968). A Bayesian
network uses Bayesian probabilistic thinking to describe
relationships among variables. In a Bayesian network, the
probability of a cause (B) can be diagnosed from an observed
effect (A) using conditional probabilities and Bayes’ rule to
obtain a posterior probability for p(B|A=2a) (Kjaerulff and
Madsen 2010). If the network only contains variables related
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to the system processes, it is known as a Bayesian belief
network (BBN). However, such a network is known as an
influence diagram (ID) if it also includes variables for
decisions and the costs and/or benefits of those decisions.
Thus, IDs not only model the processes of concern in a
decision problem but also how decisions affect those
processes and how the expected changes in the processes
affect the loss or payoff from making certain decisions.
Additional information on the development of IDs can be
found in Pearl (2005) and Howard et al. (2006).

A BBN or ID is represented as an acyclic graph with nodes
and arcs. In a BBN, nodes represent random variables with an
associated range of states. Influence diagrams can be
developed from BBNs by adding decision and utility (cost or
profit) nodes (Figure 2). Arcs are visually represented as
arrows connecting nodes and represent a probabilistic
dependency or interaction in the case of arcs that connect
chance nodes or nodes representing processes, forcing
functions, and state variables. Chance nodes can either be
continuous or discrete variables, and their relationships can be
learnt from data sets, entered as equations, or built using a
variety of other probabilistic methods. When an arc enters a
decision node, it indicates an informational relationship and
that the state of the predecessor node is known at the time the
decision is made. An arc entering a value or utility node
indicates that valued outcomes are directly dependent on the
state of the variables or decisions.

A conditional probability table may be used to represent
the potential states of a node, A, given the states of its parent
nodes (By, By,...B,). In this case, A would be considered a
child node due to its direct dependence on By, By,. . .B,, or the
parent nodes. In Figure 2, chance node A is a child node to

Suspend/ cancel

Economic benefit

NGO's

Alternatives available

Treatment locations
Application rates
Application methods

Pests controlled

Figure 1. A schematic of pesticide risk management decision making. The ovals on the left indicate technical data that must go into the decision. The middle
portion indicates the types of decisions made and the ovals on the right indicate the stakeholders affected by the decisions.
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Figure 2. Abasicinfluence diagram. A, B;, B,, and Bz are chance nodes; D is a
decision node; and V is a value node. A conditional probability table is
displayed for whether A is true or false given the states of its parents, B,
and B.

chance nodes B; and B, whereas the chance node Bs is
independent to A. The decision and value nodes are
represented by D and V, respectively. A conditional
probability table is illustrated for the states of A, which are
true and false, given whether each of the parents is in a true or
false state. Thus, nodes A, By, and B, are Boolean nodes with
their only states being true or false. Other common node
discretizations are binary (e.g., high, low), ordered (e.g., high,
medium, low) and integral (e.g., 0-10, 10-20, >20) (Korb
and Nicholson 2004). Conditional probability tables are used
in chance nodes to represent the probability of node states
occurring due to decisions being made or other processes
occurring. Utility nodes have utility functions attached to
them indicating the expected utility from the outcome states
of its parent nodes (Korb and Nicholson 2004).

Utility functions provide subjective models of preferences
for attributes. The shape of utility functions expresses the risk
attitude of a stakeholder or decision maker for preferences in
conditions of uncertainty (Clemen and Reilly 2001). Multi-
attribute utility functions index the marginal utilities to an
overall preference model for a multiple objective problem.
Utilities can be hard to formally elicit from stakeholders or
decision-makers and can make the application of IDs over
BBNs more difficult (Bielza et al. 2010). The structuring of
objectives and their attributes or measures has a strong
influence on the nature of the utility functions and should be
done using appropriate procedures such as those described in
Keeney (1992). Within an ID representation of a problem
domain, decisions that provide the highest expected utilities
are recognized as being the optimal choices (Kjaerulff and
Madsen 2010). A multi attribute utility function can be
incorporated with conditional probabilities in Bayesian net-
works to represent the uncertainty of value in outcomes:
EU(a|lE) =Y P(O;|E,a)U(O;la) (Korb and Nicholson

1

2004), where E is available evidence, i is a state for an
outcome variable, a is an action with outcome O;, U(O; | a) is
the utility of all potential outcomes when a is done, and P(O; |
E,a) is the probability distribution over the outcome states
conditional on observations of E and a.

Coupled with a formal decision analysis, an ID is a
powerful tool for integrating preference information and
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scientific evidence. The structure of an ID or BBN shows the
lack of correlations among variables (Smith 1988), or some-
times, causal inferences among variables (Bromley et al.
2005). Causation descriptions can be useful for calculating
potential outcomes based on available information. Mapping
the decision problem with a causal diagram is an intuitive way
of expressing understanding about relevant aspects of decision
making. Within IDs, decisions do not have to be isolated tasks
and awareness of the impacts or effects of individual decisions
on variables, valued outcomes, and future decisions can be
displayed and modeled.

Assessing the qualitative and quantitative aspects of a
management problem with Bayesian networks

In the past, measuring uncertainty was difficult when there
were many variables involved with the consequences (Morgan
1968). Bayesian networks provide a transparent way of
evaluating uncertainty if management problems contain many
variables from different fields (Varis and Lahtela 2002).
Although the structure of a BBN or ID represents qualitative
linkages, the likelihood of node states represent quantitative
information (Kleiter 1996). The qualitative structure of IDs
can convey the logical connections whereas the quantitative
structure provides a means of representing the uncertainties
in the decisions and processes (Bacon et al. 2002). The
quantitative aspects of the ID also allow one to consider
evidence weight in decision and process outcomes.

The graphical and quantitative structure of IDs in decision-
making makes them adaptable to many fields and levels of
expertise (Howard and Matheson 2005). Nodes representing
variables of any kind, e.g., physical, economic, or biological,
may be included in an ID. Although qualitative, the structure
of the ID is important in real-world decision problems where
variables are often complex and linked to one another
(Bromley et al. 2005). A diagram in a decision problem can
help decompose the potential events in a manner that is
informative and allows practitioners to use joint probabilities
as expressions of causation (Smith 1988).

Through the use of probabilistic functional relationships,
IDs can represent previous data or subjective opinion
quantitatively, and can be all-inclusive models for a project
incorporating algorithms and evidence from many areas.
Conditional probabilities linking child and parent nodes can
be developed from previously collected data sets or model
outputs. Expert opinion may be used as the best existing
information in cases where knowledge of conditional relation-
ships is limited. For instance, someone with knowledge about
processes at a contaminated site might be able to give expert
opinion that fills data gaps (Day et al. 1997, O’Hagan et al.
2006). Expert judgment will not be gathered for the current
IDs and BBNs, but its role in generating information when
adequate data are not available will be further discussed.

The quantitative aspects of IDs can be used to assess the
certainty of the best data available to a decision-maker
(Bromley et al. 2005). Managers might be motivated by
formal decision analysis to fill data gaps that are required for
the decision modeling, e.g., the marketing decision work
by Gensch (2001). Thus, even if there are difficulties in
determining probabilities for various relationships, the ID
can be a communication tool about data needs. Influence
diagrams can also be used to highlight technical disputes
among stakeholders. Essentially, a node with states represent-
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ing different hypotheses might be placed in the diagram to
indicate that when one of the states (i.e., beliefs in a
hypothesis) is true, a potential outcome will be more or less
likely (Conroy et al. 2008).

Pesticide risk assessment and management tasks require
characterizing the uncertainties of complex processes for
a diverse array of pesticides and uses and, therefore, are
error prone. Influence diagrams can improve or minimally
make more explicit the risk management process. An
example is provided here that demonstrates these features.
The structure of the ID will be set up to emulate how a
decision-maker contemplates a problem and will illustrate
how IDs can be useful decision-making tools for enhancing
understanding, transparency, and communication in a
decision process.

MATERIALS AND METHODS

Problem scenario

The ID in this example will be developed from the
perspective of a manager who would like to chemically
control adult mosquitoes while reducing risk to nontarget
receptors. Although there are several adulticides to kill adult
mosquitoes available, the manager decides that a particular
insecticide is most effective for the mosquito populations she
wishes to eradicate at a particular time of year. To set up the
problem, the manager wishes to differentiate the objectives of
the problem, the attributes to quantify the objectives, and the
various alternatives to achieve positive results given the
objectives. Differentiating the problem features facilitates
decision problem organization and specifies in a transparent
manner why decisions were made to stakeholders. The
manager has already received risk assessment results for
the problem. The models used to generate these results are
discussed below.

Ecological risk assessment of a mosquito adulticide

An ecological risk assessment was conducted for a
mosquito adulticide, malathion, and aquatic organisms to
quantitatively examine potential risks. Conventional risk
assessment tools generated the information necessary to
characterize risks. Risk assessment data were generated using
Agdrift® version 2.0.05 (SDTF, 2002) and PERPEST version
1.1.0.1 (Van Nes and van den Brink 2003) whereas the risk
management IDs and BBNs were constructed in Netica™
version 3.24 (Norsys 2006). The IDs and BBNs were used to
integrate the Agdrift and PERPEST outputs to examine risk
management scenarios.

Agdrift uses a Lagrangian approach that allows it to
consider the effects of spray equipment, droplet size, and
climatological variables on deposition of chemicals (Teske
et al. 2002). With Agdrift, one can vary such spraying
characteristics as application rates, drop size distribution,
wind speeds, release heights, wind direction, evaporation,
aircraft type, meteorology, distance spraying occurs from a
body of water (buffer area), flight lines, and topography of the
field (Teske et al. 2002). First an initial pulse concentration
realized on a water body was evaluated. The model was set to
the agriculture aerial Tier II level to access more parameters
than would be found in Tier I. The active rate, drop size
distribution (ASAE Fine, ASAE Very Fine, and Very Fine to
Aerosol types), distance from edge of pond, and wind speed
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were varied in each model run (as decisions and external
factors). Variations of each of these factors for each model
run were input in the root node states of the ID (Figure 3). A
Wasp helicopter was chosen for application and a temper-
ature (77°F), relative humidity (75%), and pond width and
depth (816 feet and 5.5 feet) were chosen to reflect spray
conditions during summertime in a New York City park.
Default assumptions were used for the rest of the model
parameters that were held constant over all Agdrift runs. A
detailed analysis would examine the accuracy of the chosen
spray characteristics including aerial release heights, ultra low
volume (ULV) droplet spectra, nozzle settings, field and
climate variables, and the uncertainty of inputs and outputs.
In addition, Agdrift and other common spray drift models do
not explicitly examine ULV spray scenarios (Davis et al.
2007, Schleier III et al. 2008) so more realistic modeling of
aerosol particle diameters, beyond the coarser default drop
size distributions applied in this article, would be an
important consideration.

The data from Agdrift (initial average concentration in a
water body) were placed into the PERPEST model to obtain
metrics of ecological risk. PERPEST relies on a technique
called case-based reasoning (CBR) to provide estimates of
risk. To implement a CBR approach, PERPEST contains a
database with cases (Van den Brink et al. 2002). The database
has information about the laboratory toxicity and fate
characteristics of a pesticide or information about the effects
of a pesticide on freshwater microcosm species at various
concentrations. The latter data set also contains information
on whether the pesticide was applied as single or multiple
applications, and whether water was stagnant or flowing. The
effects observed in the freshwater microcosm experiments are
placed in 5 different categories ranging from changes to
community structure to no effects. Various ecological
endpoints are assessed based on the outcome of the individual
microcosm experiments for each effect class. These stored
experiences are then compared to a user-entered scenario and
used to derive a probability of each of the effects classes
occurring for an endpoint based on the information contained
in the cases. In PERPEST, cases were weighted using the toxic
unit, the mode of action, the molecule group, and the
substance. These were used to weigh the cases when selecting
analogous scenarios to the current input parameters for the
chemical and the loadings. Cases were selected using the
nearby toxic unit, that is, chemicals in the case database were
chosen with a similar toxic unit that is based on loadings and
the toxicity of the chemical. Malathion was selected as the
input chemical, and its structure and toxicity characteristics
were used as the weighing and selecting basis for PERPEST.
The initial average concentration in Agdrift was assumed to
correspond with the exposure concentration used for toxic
unit calculations in PERPEST'S cases (normally the peak
nominal concentration).

The USEPA (2002) stated that a pesticide toxicity assess-
ment can be initiated with information on pesticide mode of
action and effects related to its toxic mode. This information
is used by PERPEST for establishing similarity of cases.
Models like PERPEST that rely on probabilistically
relating accumulated evidence are ideal for pesticide risk
management tasks and can assist in establishing conditional
probabilities for risk-based IDs. Moreover, ecological risk
assessments normally focus on direct effects on population
or community-level parameters from pesticide exposure
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Table 1. Descriptions of nodes used in the IDs

Node type Node label States

Pond downwind Near

distance

Chance

Moderate
Far
Decision Application rate High
Moderate
Low
Decision Drop size distribution Fine
Moderate
Coarse
Chance Wind speed High
Moderate
Low
Chance Effects: fish None
Slight
Recovery
Unknown recovery
Extirpation
Chance Effects: arthropods None
Slight
Recovery
Unknown recovery
Extirpation
Effective

Chance Efficacy

Not effective

No significant adverse effects to arthropods

State definitions Source

100 feet of buffer area from a pond Agdrift input

150 feet of buffer area from a pond
200 feet of buffer area from a pond
0.24 pounds of active ingredient/acre Agdrift input
0.12 pounds of active ingredient/acre
0.06 pounds of active ingredient/acre
ASAE Aerosol to Very Fine distribution Agdrift input
ASAE Very Fine distribution
ASAE Fine distribution

10 mph Agdrift input

5 mph

2 mph
No significant adverse effects to fish Perpest output

Limited effects to fish of short duration

Clear effects to fish but recovery occurs in <8 weeks
Clear effects to fish with uncertain recovery

Clear effects to fish and no recovery after 8 weeks

Perpest output

Limited effects to arthropods of short duration
Clear effects to arthropods but recovery occurs in <8 weeks
Clear effects to arthropods with uncertain recovery

Clear effects to arthropods and no recovery after 8 weeks

Successful adult mosquito abatement Hypothetical

scale

Unsuccessful adult mosquito abatement

ASAE = American Society of Agricultural Engineers; ID =influence diagram; mph = miles per hour.

(Pastorok 2003). From ecotoxicological studies with multiple
species, PERPEST includes ecologically relevant endpoints
built from microcosm studies related to different structural
and functional components of ecosystems and uses informa-
tion from studies that include indirect effects from pesticide
exposures.

Table 1 displays the source model inputs that were varied
and selected outputs with corresponding ID and/or BBN
categorical labels. For more details, see the manual and
technical documentation for Agdrift and PERPEST. The
input variables were selected from Agdrift for this example to
examine a range of spraying scenarios. In practice, the states
for each of the input variables should encompass a full range
of real-world scenarios that could influence the objective
nodes of minimizing adverse ecological effects and effectively
killing adult mosquitoes.

Construction of Bayesian belief networks and influence
diagrams

Probabilities of ecological effects to various aquatic taxa
generated with PERPEST were used to construct the
quantitative node relationships in Netica (Norsys 2006).
The Netica software provides a platform for building BBNs
or IDs from users input nodes and arcs, or conditional
probability tables. Inferences from relationships can be
examined with a BBN. The effects of uncertain outcomes
on potential rewards or costs from decision can be viewed
through utility and decision nodes in a Netica-generated ID.
Users can also establish probabilistic relationships from
mining monitoring data using Netica algorithms.

Decision, chance, and utility nodes were set up within
Netica to represent the objectives, attributes, states of nature,



344

Integr Environ Assess Manag 8, 2012—JF Carriger and MC Newman

a Pond downwind distance Application rate Drop size distribution Wind speed |
Near a High 0 {1 | e Fine [’ il High 100
Moderate 0 Moderats  83.3798 Moderate o HE Moderata O H
Far 100 Low 0 H Coarse  A3.3796 Low o i
Effects- fish Effects- arthropods Efficacy

None 3.6 p—— Nene 56,7 j— Effective 80.0

Slight 4.05 R Stight 158 Not effective  30.0 :: I !

Recovery 115 i Recovery 7.20

Linknown recovary 1.20 | Unknown recovery 188

ExNpation g - w 3

b Pond downwind distance | Application rate | Drop size distribution Wind speed |
Near 100 High 73,8648 Fina 0 R High 100
Moderate o Moderate 0 i 1 Moderate  73.8648 Moderate 0 i |
Far 0 Low 0 { Coarsa ] | Law 0 |
ENects- fish Effects- arthropods Efficacy

Nane B7.2 Mona 119 Effective 90.0

Slight 18.3 Slight 286 N " 1 R

Recovery 4.00 Recovery 19.7 S SHeve Ll

Unknown recovery  8.00 Unknown recovery

Extirpaticn 1.50 Extirpation

Figure 3. Mosquito adulticide influence diagrams exhibiting the effects of 2 spray scenarios to effects categories for fish and arthropods and effectiveness in
killing adult mosquitoes. The chance nodes are gray and brown and the decision nodes are blue. The utility node is a pink hexagon labeled "’U.”” The expected

utility values are displayed in the blue decision nodes.

and value in the problem. The root nodes (nodes without
predecessors and marginal distributions) contain uniform or
flat probability distributions across their states. A multi-
attribute utility scale was created to reflect how a hypo-
thetical group of stakeholders might adjudicate about the
trade-off in values between ecological resource integrity and
the effectiveness of the spraying procedure. The utility scale
used in this article will be a tabulation of the function based
simply on numerical values assigned to represent the strength
of positive or negative outcomes. In practice, value models
should be constructed with stakeholder elicitations, and
proper assumptions should be met when constructing a
utility function.

RESULTS

Influence diagrams for environmental management

To establish the ecological objectives, the manager con-
templates the populations that might be exposed. Several
water bodies used by fisherfolk and others for recreation exist
near the locations where adult mosquitoes congregate. The
manager formulates a fundamental objective to make the best
possible decisions about how to effectively spray to control
West Nile Virus vectors while minimizing adverse ecological
effects to nontarget organisms. The lower-level objectives for
minimizing adverse ecological effects to nontarget organisms
would be to minimize adverse ecological effects to fish and
nontarget arthropods. Arthropods can be assumed to be

susceptible to the adulticides because the target organisms
(mosquitoes) fall into this taxonomic group. However, the
manager is concerned about the generation time for fish in
comparison to arthropods if a mortality event occurs. The
manager realizes that these 2 attributes (fish and arthropods)
are not independent in real-world scenarios. However, the
probabilities of effects for each are independently specified
from the output of PERPEST; the manager considers this
pragmatic specification of independence to be acceptable.
The structure of the ID for the current example is given in
Figure 3. The network has 5 chance nodes, 2 decision nodes,
and 1 utility node. The chance nodes are based on circum-
stances important to minimizing adverse ecological effects
and mosquito control. The important circumstances repre-
sented by the chance nodes are the downwind distance of the
pond from the spraying location (access availability or pond
distance from plane lines) and the wind speed during
spraying. Each of these is a process outside of the decision-
maker’s control when a date, time, and location are selected.
The influence of the latter variables could be modeled in the
current ID if the decision-maker thought it would be valuable
to capture this information. However, once the decision-
maker knows where or when spraying should occur, she can
input the parameters in the current decision model without
losing information. The other 3 chance nodes specify
potential outcomes from spraying. Adverse effects might
occur to nontarget organisms and mortality to target
organisms also might occur. There would be other outcomes
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after a spraying event, but these were deemed to be most
important for management and stakeholders and so are the
ones displayed for assessment. The outcome of each of these 3
variables influences the utility of the decision that is expressed
with a pink utility node.

Risk managers are charged with confining risk estimates to
levels that are needed for the purposes of their decisions and
these risk estimates should not be too cautious nor too
incautious (USEPA 2004). The Federal Insecticide Fungicide
and Rodenticide Act stipulates that a pesticide use will not
cause ‘‘unreasonable adverse effects on the environment”
(USEPA 2003). Following this mandate, the standard USEPA
consideration in evaluating pesticides is unreasonable risk to
humans or ecology (USEPA 2000). Risk considerations in the
current example will focus on probabilities of local extinction
of a taxonomic group, given previous evidence from field or
mesocosm scenarios.

Different choices for the spraying event are examined in
Figure 3. Although evaluating risks and effectiveness is
important, the value of the IDs in Figure 3 lies in the ability
to examine the trade-offs in light of utilities. For the purpose
of comparison, 2 IDs are displayed in Figure 3 with different
spray characteristics highlighted. In Figure 3A, the pond
downwind distance is far, the application rate is moderate, the
drop size distribution is set to its coarsest value, and the wind
speed is high. The resulting utilities (displayed in the decision
nodes) are higher than the one in Figure 3B, indicating that
this spray scenario is better. Examining the ecological effects
and efficacy variables indicates that the risk is much lower in
Figure 3A but the efficacy is less. This is interesting given that
the efficacy outcome was weighted higher in the utility
function than either of the ecological outcomes. In terms of
trade-offs, the risk was low enough to compensate for having
a lower probability of controlling adult mosquitoes. Changing
some basic assumptions about the distance downwind from
the pond, the application rate, and the drop size distribution
causes a change in the utility values for our decisions. Some
decisions might mitigate several issues and should be
examined closer (Bierbaum 2002).

For each of the decisions to be made, we can estimate the
probabilities of adverse effects for fish and arthropods as well
as the efficacy of the spraying event. Table 2 presents the
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results based on the decisions of application rate and drop size
distribution when spraying for a case scenario in which the
pond downwind distance is known to be near and the wind
speed is high. The potential risk of interest to fish is for the
sum of the unknown recovery and the extirpation categories
(adverse effects). Summing of the none, slight, and recovery
node states would give a probability of low or negligible
effects. Alternatively, they could be deduced from the adverse
effects probabilities by subtracting them from 1 or 100
depending on whether the probabilities are expressed in
decimal numbers or percents. As can be seen from Table 2, a
higher application rate and smaller drop sizes will potentially
give a more effective spraying. However, the same decisions
increase potential risks to fish. The utility values were
constructed as a way of measuring these trade-offs based on
the value that is placed by stakeholders on chemically
controlling adult mosquitoes or loss of fish. The highest
expected utilities are generally found by deciding on
moderate and low application rates with a coarse drop size
distribution. The magnitude of changes in utility should be
interpreted with caution. As observed in a decision analysis
for a fisheries management context, conversions from their
multiple attribute utility functions on a scale of 100 equated 1
utility score increase to $4.5 million in benefits (McDaniels
1995). The interpretation of expected utilities should
consider the trade-off information as well as the risk attitudes
incorporated into the utility function.

Another advantage of placing probabilities of risk into an
ID or BBN is the ability to project backwards to spraying
factors that will lead to certain risk levels. Within the ID, we
can specify likelihoods for ecological outcomes and observe
what field characteristics are favored for these outcomes.
Also, if the decision nodes are chance nodes or random
variables in an inference problem, we might examine what
application rate or drop size distribution would be most likely
given high or low-risk levels. Figure 4 shows the 2 decision
nodes (application rate and drop size distribution) as chance
nodes (effectively turning the ID in Figure 3 to a BBN). By
entering a finding of 100% extirpation to fish and arthropods
in Figure 4A, we observe that the shortest pond downwind
distance has the highest probability (39%) of causing
this while wind speed is most likely to be high. In

Table 2. Potential risk to fish (adverse effects probabilities), effectiveness, and expected utility of adulticide management decisions
(application rate, drop size distribution) when pond downwind distance is near and the wind speed is high

Application rate Drop size distribution

High Fine

High Moderate
High Coarse
Moderate Fine
Moderate Moderate
Moderate Coarse
Low Fine

Low Moderate
Low Coarse

p (fish adverse effects)

p (effective) Expected utility

0.15 0.93 74
0.105 0.90 74
0.04 0.84 77
0.07 0.89 75
0.04 0.86 76
0.01 0.80 82
0.04 0.81 75
0.04 0.78 74
0.01 0.72 80
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Figure 4. Bayesian belief network displaying probability distributions for spraying conditions when evidence is entered for (A) local extirpation to fish and

arthropods and (B) no adverse effects to fish and arthropods.

Figure 4B, evidence of no adverse ecological effects is entered
into the BBN and the far pond downwind distance has the
highest probability of causing no adverse ecological effects
(35.5%). The low wind speed also has the greatest chance of
causing no adverse ecological effects (38%). Also note from
both figures that there is a lower probability of having an
effective spraying when no adverse ecological effects are
observed (82% vs 68%). Observations can be placed within a
BBN for causes to compare and contrast probabilities of
adverse ecological effects. Findings can also be specified for
each of the effects categories and probabilities of various
causes examined.

From Figure 4A, one can see that the 2 chance nodes
related to decisions have states that are more likely given clear
ecological effects than the other 2 root nodes, wind speed and
pond downwind distance. The high application rate presents a
much higher probability of having clear ecological effects on
fish and arthropods than the other application rates. Also, the
finest drop size distribution is more likely to produce adverse
ecological effects. The opposite trend from Figure 4A was
found for a scenario with no adverse effects to either fish or
arthropods in Figure 4B.

All of these steps can also be done with the efficacy node.
Thus, although the spraying outcomes were constructed from
modeled data and expert opinion, the BBN allows us to
clearly view what inputs are more likely to give certain
outputs. This is an invaluable inference tool for risk manage-
ment, but the ID should be used to ascertain the options that
might bring the highest reward or lowest adverse effects
under certain scenarios. To simplify the decision selection
process, Netica can recommend policy options by optimizing

decisions. Drawing arcs from wind speed and pond downwind
distance to the 2 decision nodes would give recommended
decisions for any combination of the site conditions that
might be encountered. In addition, Netica can find optimal
decisions via node absorption using methods described in
Shachter (1986, 1988, 1990) and Norsys (1997).

DISCUSSION

Evaluating uncertainty with experts

One of the challenges of applying IDs to environmental
decisions is the common lack of information with which to
estimate required probabilities. This can be partially circum-
vented using expert opinion to fill in the data gaps and elicit
probabilities. As with the present example, the adverse effects
nodes for fish or arthropods were derived from the output of
several models, however, the efficacy node had unclear
estimates, so expert judgment would be useful to derive the
associated probabilities.

To establish effective spraying scenarios, clearly defined
schemes would be created and information given to a group of
experts to consider. Pairwise comparisons might be elicited
like Merrick et al. (2000) did in a risk assessment for Prince
William Sound oil transport, quantiles might be elicited for
efficacy probabilities and/or the values of internal and
external factors (e.g., wind speed), or odds of an effective
spraying might be elicited given various spray application
scenarios. For information on elicitation protocols for
individual experts, see Hora (2007).

Restrictions would be established to delimit the informa-
tion needed from the experts. For example, the experts would
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be told ULV applications (e.g., 3 fl oz of chemical per acre)
will be used to ensure that the adulticide lingers long enough
to kill as many mosquitoes as possible. Thermal fogging may
also need to be considered by the expert. Aerial applications
will be done with high-pressure pumps and over larger
distances than ground applications for more effective remov-
als. Other constraints would be placed on atmospheric
stability, spray equipment, release heights, aerial swath
widths, wind speed ranges, droplet size calibrations, and
allowable application rates depending on policies followed by
the abatement agency.

Checks would be made on the elicited effectiveness ratings.
For example, higher application rates and the lower end of the
droplet sizes should be more effective for mosquito control.
Also, the upper end of the recommended wind speeds is
predicted to be more effective due to a high amount of
vegetation in the region where the mosquitoes congregate.
The expert’s performance can be assessed individually or
weighted and combined with other experts using calibration
and information scores on variables with known outcomes
(Cooke 2009). Calibration would evaluate the expert’s
predictions with experimental results and information would
relate to the specificity of predictions. Thus, the expert would
be penalized for giving results that are broad and uninforma-
tive.

Using an individual’s beliefs to derive probabilities is a
Bayesian task, as it emphasizes the lack of knowledge of a
situation using uncertainties and can be an advantageous way
to fill in data gaps (Smith and von Winterfeldt 2004).
Influence diagrams can assist in collecting data by presenting
the issues and the known and unknown variables in a clear
manner. Additional information on expert elicitation can be
found in O’Hagan et al. (2006) and Roman et al. (2008).
Clemen and Winkler (1999) also discuss procedures for
combining probability distributions from multiple experts.

Evaluating uncertainty with stakeholders

Stakeholders can also provide information on the proba-
bility of outcomes with IDs. Bayesian networks provide an
outlet for representing stakeholder beliefs in structural and
quantitative aspects of problems including how their percep-
tions can change with different types of information (Welp
et al. 2006). Stakeholders involved with model building at the
outset of a project might develop greater trust in the model
due to their knowledge of the modeling components and their
understanding of its capabilities (Voinov and Bousquet 2010).
Arentze et al. (2008) developed and tested a methodology for
eliciting structure, probabilities, and utilities for an ID with
stakeholders. For a regional water usage problem, Molina
et al. (2010) involved stakeholders early in the development
of BBNs that allowed the construction of models that
reflected diverse concerns and perceptions. Despite some
difficulties in the workshops, the ID in Henriksen et al.
(2007) included varying expert and citizen stakeholder group
beliefs on groundwater quality protection and discussed how
important variables not readily available were identified by
including stakeholders in the model building process. A node
was added to identify a divergence in belief about outcomes in
the Henriksen et al. (2007) study. Conroy et al. (2008) also
demonstrated how differing views among stakeholders on
uncertainty can be examined with IDs. Giordano et al. (2010)
noted how developing BBNs with different stakeholders
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allowed them to learn about their differences in perceptions.
However, methods for ID development with stakeholders
should be constructed with care as the process of properly
eliciting probabilities can be difficult for some stakeholders
(Zorilla et al. 2010).

Adaptive management and monitoring

The development of IDs includes tractable ways of
incorporating value judgments and technical judgments to
assess the expected value of perfect or imperfect information
in reducing uncertainties important to decision making (see
Clemen and Reilly [2001] for examples of this approach in
IDs). Adaptive management (AM) can be useful in an ID by
testing whether the impact of decisions perform as anti-
cipated (Cain 2001). This was demonstrated in a simple
example by Conroy et al. (2008), where evidence input in the
ID for scenarios updated knowledge about whether certain
beliefs of stakeholders were more or less valid. The ID
presented in this article could be extended for this purpose by
adding a parent to the Efficacy node, with states indicating
different expert opinions about whether an effective spraying
occurred for the varying site characteristics and decision
variables. After a spraying, monitored efficacy would indicate
whether the spraying was effective, and this along with the
decisions and site characteristics would be input to the ID.
Beliefs about which expert models are more likely would then
be updated and examined given this new evidence. Conroy
et al. (2008) discuss additional considerations such as
measurement uncertainty that would be optimally accounted
for in an ID that is useful for such a task.

An ID should be used to represent knowledge available
during a reasonable time frame (Cain 2001). As AM is
undertaken, the decision process might improve and new IDs
would be constructed to reflect this better understanding.
Bayesian networks, developed even when little information is
available, can be evaluated and improved using AM (Ames
et al. 2005). Nyberg et al. (2006) describes a complete AM
approach for BBNs and IDs that include stakeholder and/or
expert participation along with monitoring and updating of
the model structure and underlying probability tables. After
developing an ID through targeted monitoring and exper-
imentation, the ID can be used to test decision scenarios and
repercussions of informational variables on decisions in the
Nyberg et al. (2006) approach. Furthermore, Pollino et al.
(2007) discuss how AM can be usefully considered with BBNs
over traditional ecological risk approaches for updating and
learning as developments occur in the management and
monitoring process.

Disadvantages of influence diagrams

Some of the factors that contribute to difficulties in
constructing and using IDs are prevalent in many decision
analysis implementations such as deriving probabilities and
utilities. Bielza et al. (2000) discuss some of the difficulties in
constructing IDs for complex decision problems. According
to them, this would include tracking time-dependent
decisions in the “no forgetting”’ sequence required by IDs,
asymmetry from numerous constraints on decisions, the
difficulties in eliciting utility functions, and communicating
recommendations from utilities in a manner that is appro-
priate and proper. Asymmetry results when taking one action
causes a different set of options to appear than if another
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option is taken (Owens et al. 1997). Its representation can be
better displayed and communicated in decision trees (Owens
et al. 1997). Decisions are also discrete actions available to a
decision-maker at a certain time and not having continuous
representations can be difficult when decision intensities must
be considered. Some problems also shared by BBNs are the
difficulties modeling temporally continuous relationships,
restrictions on spatial and temporal scale variations in
relationships throughout the diagram, and the inevitable lack
of data to establish strong relationships at the outset of a
problem (Liedloff and Smith 2010). However, when applied
properly, IDs can be a very beneficial tool. For example,
Gomez et al. (2007) significantly improved a hospital’s
neonatal treatment system for jaundice cases with the
development of a complex ID and application of other
decision analysis tools such as an objectives hierarchy.
Successful applications of IDs that improved real-world
decisions such as Goémez et al. (2007), along with past
failures, should be considered in future work that develops
IDs for environmental management.

CONCLUSIONS

In the current article, we illustrated how a manager could
set up an ID to evaluate unintended risks and compare these
risks to beneficial consequences from a series of decisions. The
objectives, alternatives, and attributes were chosen and placed
in an ID so that stakeholders can understand the thinking
behind management decisions and the trade-offs that were
evaluated before taking a course of action. Also discussed was
the application of IDs for a risk management program with a
temporal or a monitoring component, for example, adaptive
risk management tasks. Incorporating diverse information
from varied model output and monitoring tasks is possible in
IDs making them especially conducive to weighing tradeoffs
from the usage of pesticides.

Updating Bayesian networks with new data to match
changing scenarios can be a straightforward process. For
example, the status of parent nodes in a BBN can be easily
manipulated if new evidence becomes available. The effects
of these changes on the model output can then be witnessed
quite easily (Wooldridge and Done 2004). In addition, BBNs
can be back transformed to explore how a child node’s
outcome can be influenced by its parents (Wooldridge and
Done 2004). As Henderson and Burn (2004) stated, BBNs or
IDs “model complex causal inter-relationships in a flexible
way.”” This flexibility along with the ability to include many
types of information makes IDs ideal candidates to logically
determine courses of action in risk management.

An ecological risk-based decision is difficult to make
without a formal process or guidance to weigh evidence and
trade-offs. Yet, the decision-making process can often be a
loose, unstructured process due to misinformed traditions and
guidance. Many hidden factors then are included during
decision-making. For instance, people have a tendency to
fixate on initial conditions or select dominant processes when
informally implementing solutions to problems (Tversky et al.
1988). A decision analysis framework with IDs could be a
useful tool in pesticide risk management to circumvent the
tendency to unconsciously become fixated by dominant
processes. The quantitative aspects of the ID can assess some
of the uncertainty in complicated risk decisions and how these
decisions influence the objectives in the problem.
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As demands for accountability from the public increase,
future decision-making tasks could become more transparent
and traceable. If this occurs, erroneous assumptions that go
into decision making will be made more explicit and new
ways of making risk-based decisions should be inevitable. The
IDs displayed above allow risk managers to communicate
with stakeholders about the various aspects of the decision
problem and the potential value from implementing deci-
sions. The structure of an ID encourages constructive thinking
and openness. When this structure and the quantitative
aspects are considered together, the ID can be regarded as a
manageable tool for organizing data in a decision problem.

Just as in science, assessments for environmental manage-
ment can benefit from peer review to further give indication
that the process was integral, useful, and fair (Bierbaum
2002). Following the trends of ecological risk assessment
(Russell and Gruber 1987), formal guidelines for risk
management will help decisions be more defensible and
justifiable when they undergo public scrutiny. These guide-
lines should be accommodating enough to allow the decision-
maker to match the conditions of the problem she is assessing.
For peers or stakeholders to understand the factors that went
into a decision, a causal network or ID with associated notes
on its setup can be given so the analyses can be evaluated in an
expedient and tractable manner. Whatever framework is
chosen for a decision analysis, it should encourage observa-
tion, questioning, and reframing. Problems should be
conceptualized through a framework, not bound by it.
Combined with other tools in a multicriteria decision analysis,
the ability of the ID to evaluate trade-offs can be examined in
light of other methodological requirements and output
(Yatsalo et al. 2007).

Influence diagrams can be computational models with
intuitive graphical user interfaces designed to implement and
model the requirements needed for decisions. Over the last
several years, ID use has increased in many management
fields. This increase follows the advent of high computational
power that allows ID construction including many variables
and complex algorithms. The current availability of IDs is a
boon to managers tackling complex decision problems. As
such, its ability to represent the important management
factors in a decision problem and quantitatively describe
uncertainties in decision outcomes should not be overlooked
in future risk management tasks.
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