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5.1 INTRODUCTION

Bayesian approaches are discussed throughout this book. Unfortunately, because
frequentist methods are typically presented in introductory statistics courses, most
environmental scientists do not clearly understand the basic premises of Bayesian
methods. This lack of understanding could hamper appreciation for Bayesian
approaches and delay the adaptation of these valuable methods for analyzing uncer-
tainty in risk assessments.

Bayesian statistics -are applicable to analyzing uncertainty in all phases of a risk
assessment. Bayesian or probabilistic induction provides a quantitative way to estimate
the plausibility of a proposed causality model (Howson and Urbach 1989), including
the causal (conceptual) models central to chemical risk assessment (Newman and
Evans 2002). Bayesian inductive methods quantify the plausibility of a conceptual
model based on existing data and can accommodate a process of data augmentation
(or pooling) until sufficient belief (or disbelief) has been accumulated about the pro-
posed cause—effect model. Once a plausible conceptual model is defined, Bayesian
methods can quantify uncertainties in parameter estimation or model predictions
(predictive inferences). Relevant methods can be found in numerous textbooks, e.g.,
Carlin and Louis (2000) and Gelman et al. (1997).

Bayesian fundamentals are reviewed here because several chapters in this volume apply
these methods in complex ways to assessing uncertainty. The goal is to create enough
~understanding so that methods described in later chapters can be fully appreciated.

5.2 CONVENTIONAL (FREQUENTIST) INFERENCE METHODS

The standard tools of statistical inference, including the concept and approaches of
constructing a null hypotheses and associated p values, are based on the frequentist
view of probability. From a frequentist perspective, the probability of an event is
defined as the fraction of times that the event occurs in a very large number of trials
(known as a probability limit). Given a hypothesis and data addressing it, the classi-
cal procedure is to calculate from the data an appropriate statistic, which is typically
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a single number. Based on the hypothesis being true and other assumptions, the
probability distribution of this statistic is a known function.

This distribution, together with the numerical value of the statistic, allows an
assessment of how “unusual” the data are, assuming that the hypothesis is valid. The
p value is the probability that the observed value of the statistic (or values even more
extreme) occur. The data are declared significant at a particular level (o0); if p < o, the
data are considered sufficiently “unusual” relative to the hypothesis and the hypoth-
esis is rejected. Standard, albeit arbitrary, values of o are taken as 0.05and 0.01. Let
us suppose that a particular data set gives p = 0.02. From the frequentist vantage,
this means that, if the hypothesis were true and the whole experiment were to be
repeated many times under identical conditions, in only 2% of such trials would the
value of the statistic be “more unusual or extreme” than the value actually observed.
One then prefers to believe that the data are not, in fact, “unusual”* and concludes
that the assumed hypothesis is untenable.

It is important to note that the conclusion drawn from the observed data is based
on a comparison with virtual data that might have been collected in other identical
experiments but were never really observed. In fact, a judgement is made on the
data rather than directly on the model or hypothesis. No consideration is given to

the plausibility of the original hypothesis or specific alternatives. It is an erroneous

assumption that the p value is a measure of the validity of the null hypothesis. As
noted, p merely makes a statement about the data on the assumption that the hypoth-
esis is valid. ’

While this is an almost universally used technique for testing hypotheses, the
procedure can produce some odd or ambiguous conclusions. The following example,
from the suggestion of Lindley and Phillips (1976), is quoted by Carlin and Louis
(2000). We test the null hypothesis H,:0 = 0.5 for the probability that a given coin
will turn up “heads” after a toss; the alternative hypothesis is H,:0 > 0.5, i.e., the coin
is biased toward “heads.” Twelve independent tosses result in 9 heads and 3 tails. In
this case, the choice of test statistic is simple; it is the number of heads, denoted by
r. The binomial distribution gives the probability of obtaining  heads in 12 tosses
as the following:

P(F‘G,n = 12) — [12] o (1 _e)lzf,
r

The p value is given by

r=12

Zp(rlez 0.5,n:12):o.073

r=9

* That is, the observed statistic is considered to be a sample from the “center” of some (unknown) distri-
bution whose form depends upon the true (unknown) hypothesis.
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This is the probability of obtaining the observed number of heaqs, or more extreme
(i.e., larger) values, when H, is assumed true (8 = 0.5). Thus, H, is not rejected at the

5% level; to observe 9 heads, or more, in 12 tosses, is not sufficiently unusual for a

coin with 0 =0.5. . e
The above treatment has implicitly assumed that the éxperimental design was

such that the number of trials was fixed at 12 and the observatic?n was thfa number f’f
heads. However, an alternative design could have been to continue tossing the coin
until 3 tails were obtained, and the observation Woul('l be n', the. number of ?os'ses
required to produce the 3 tails. In this case, the statistic for Judgl'ng Fhe .data is just
1. But the distribution of n, the number of tosses to produce 3 tails, is given by the

negative binomial:

- p(n,‘e, r= 3) - ["‘ ) 1} 01— 9)3 | 53

and the p value for the experiment is given by

o0

Z p(lp=05r= 3)=0033 i

n=12

This is the probability of a result of n = 12, or more extreme values, given that 8 =0.5
(H, assumed true). The result calls for rejection of Hy at .the 5% level. .

The difference arises because the identification of which of the data eleqlent is the
random variable differs between the 2 designs. Itis 7, the number of heads, in the first
case and 7, the number of tosses, in the second. The p values compare the actually
observed data with the data from an infinite number of virtual experiments (the f.re-
quentist approach). In the first case, all these experiments have. 12 tosses and varying
aumbers of heads: in the second, they all have 3 tails and varying numbers of tosses.

Critics of the frequentist approach consider this disturbing. The actual observa-
tions: “in 12 tosses of a coin, 9 heads and 3 tails were observed” should not leafl to 2
different conclusions dependent only upon the choice of when to stop the experiment

(at 12 tosses or at 3 tails).

5.3 EXPERIMENTS CHANGE THE STATE OF KNOWLEDGE

The basic premise of the Bayesian approach is that Qbservations. change. the stat'e
of knowledge of a system. Let us suppose for simpli.c1ty that the item of interest is
some parameter, 6, describing a state of nature (as in Fhe ?bove example, .Where 0
was a property of the coin and the conditions under which it was tossed). Figure 5.1
indicates symbolically the development of knowledge. ‘ B
The extent of knowledge about 6 can be quantified by showing that probab%h.ty
also can be interpreted as “degree of belief” (Lindley 1965), “measure of plausibil-
ity” (Loredo 1990), or “personal probability” (O’Hagan 2001). Early workers such as
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Prior knowledge of 8 Observations | Better knowledge of 8

FIGURE 5.1  Observations contribute to knowledge.

Bernoulli (1713) held this view of probability. Laplace (1812, 1820, 1951) described
probability theory as “commonsense reduced to calculation.” And, in Laplace’s
epistemic context, probability “expresses numerically degrees of uncertainty in light
of data” (Howson and Urbach 1989). A large part of the motivation for the initial
studies by workers such as Bernoulli and Laplace derived from the sponsorship of
gambling noblemen. In fact, the problems addressed might now be called risk assess-
ment because the noblemen wished to conduct their gaming so as to reduce their risk
of loss and increase the “risk” of winning. Probability theory was intended to assist
such decision making.

The above approach, which was attacked as being too vague to be the starting
point of any theory of probability, led eventually to the frequentist approach, where
probability was defined in a manner that assigns a numerical value, albeit a value that
cannot ever be measured, since it requires an infinite number of trials

The numerical properties of probability and degrees of belief can be defined
effectively and sensibly using a few axioms.

5.4 RULES OF PROBABILITY

Probability can be defined as a limiting case of a frequency ratio, and from this
view the various rules of probability can be derived. An alternative approach is
an axiomatic one that states that there is a quantity called probability associated
with events and that it possesses assigned properties. The former is largely the
frequentist point of view, the axiomatic approach is shared by Bayesians and non-
Bayesians alike.

Probability values lie continuously in the range 0 to 1 inclusive, where the end-
points zero and unity are identified with impossibility and certainty, respectively.
This follows immediately for the frequentist; for the axiomatic approach it is adopted

_as an axiom, but one imbued with Laplace’s “commonsense.” Any other range could
be chosen at the cost of greater difficulty of interpretation.

Suppose A and B are events, then,

p(AB)=p(A|B) p(B) , 5.5)

where “AB” means that both events occur, or both propositions are valid. The
notation introduces p(AlB), the probability of A conditional on B. For the frequen-
tist, it means lim (n(AB)/n(B )) being the frequency ratio of occurrence of A on
all the occasiond when B occurred (n => N). If p(B) = O then, as the total number
of trials (N) tends to infinity, so does n(B). The above relationship then follows
quite directly:
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n(B) ~ n(AB)

n(A) - n(AB)

FIGURE 5.2 Venn diagram illustrating the development of conditional probability.

P(”)ﬂg;@ ~ lim ”n(ag).%’?)
— lim n(AB) im ”(B)

N-cd B N— N

( 5.6
s} ol .

For the Bayesian, the relationship is taken as an axiom, but its motivation reflects the real
world with the foreshadowing of rules implied by the above frequentist treatment.
Given the 2 events or propositions, A and B, then

p(A or B)=p(A)+ p(B)- p(AB) 67

where “A or B” means the inclusive “or,” i.e., atleast 1 of A and B occur. In Figur.e 5.2,
it corresponds to the union of the 2 areas. The frequentist’s numbers are shown in the
various categories. From the figure it can be seen that

n(A or B) {n (AB)}+{n(B)—n(AB)}+n(AB)

=n(A)+n(B)-n(AB) 6.3

from which the result follows. The Bayesian takes the result as an axiom, motivated

by the real world.

5.5 BAYES’ THEOREM

The result p(AB) = p(A[B) . p(B) is symmetrical in A and B on the left side. It
could equally well be written p(BA), but
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p(BA)= p(B|A)- p(4A) | | 59

thus

p(A|B)- p(B)= p(B|A)- p(4)

,,(A|B):M

5.10

Equation (5.10) is a statement of Bayes’ theorem. Since the theorem is proved using
results or axioms valid for both frequentist and Bayesian views, its use is not limited
to Bayesian applications. Note that it relates 2 conditional probabilities where the
events A and B are interchanged. _

Bayesian interpretation and application of the theorem quantifies the development
of information. Suppose that A is a statement or hypothesis, and let p(A) stand for
the degree of belief in the statement or hypothesis A, based on prior knowledge, it
is called the prior probability. Let B represent a set of observations, then p(BIA) is
the probability that those observations occur given that A is true. This is called the
“likelihood” of the data and is a function of the hypothesis. The left side, p(AlB),
is the new degree of belief in A, taking into account the observations B, it is called
the posterior probability. Thus Bayes’ theorem tracks the effect that the observa-

tions have upon the changing knowledge about the hypothesis. The theorem can be
expressed thus:

posterior probability o< likelihood function X prior probability ¢.11)

Figure 5.3 is a copy of Figure 5.1 showing the portions of the Bayes formulation
pertaining to each part of the development of knowledge.

The argument can be extended to treat multiple hypotheses. Suppose A, and A,
are competing hypotheses. Then Bayes’ theorem gives the following:

Pl PP,y U0 )

p(B) T p(B 5.12)

Observations
»(B|A)
Prior knowledge of 8 p(B) Posterior knowledge of 8
P(A) ; p(A[B)

FIGURE 5.3 The contributions of the components of Bayes’ theorem to the development
of knowledge.
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giving the ratio

p(alB) p(BlA) p(a)
p(4:]B)  p(Bl4:) p(4) | 5.13)

which can be written in words as

posterior odds ratio = likelihood ratio x prior odds ratio.

The coin-tossing experiment can be analyzed using> this approach. As. before,blet O be
the probability of “heads.” The hypothesis 8 =0.5 is essentially meamngles(si eeca(t)x;e
9 is a continuous parameter. Let the 2 hypotheses Al ‘a.nd A,be <05 artl1 T t.. e,
respectively. The “prior odds ratio” represents an initial assessment of the re a 1vS
probabilities or degree of belief of the 2 hypothese.s. In the absence of any prev101111
knowledge, a “noninformative prior” is used; iI.l this case, we may assume 1t etiluath)é
likely that the coin is biased to heads or tails, 1.e., p (_A‘).= p(A,). Conseggen }',’1 °
prior odds ratio is unity. Recognizing the earlier ambiguity whether ‘thel- linozinllca 2~
negative binomial distribution is applicable, we shall calculate the likelihood fun
tion, p(BIA,) using each. o
For the binomial distribution the likelihood function is

p(9\n - 12,9) :[192199 (1—9)3 ' -~

and for the negative binomial it is
11} 3
p(lz(e,r:3)= J |0 (1-6) 515

The functional dependence upon 0 is identical for the 2 distributigns. The colef—
ficients cancel out when the likelihood is used in Bayes’ theorem since they also

appear in
1
ple)= [ oleloje
0

they also cancel out in the likelihood ratio. Th(? approach does not suffef fromtar;ltbilr-l
guity depending upon the design of the experlment; only the datfl are 1m§(;r a L in
conformance with the likelihood principle, which states that the hkellhocé lcunc 1the
expresses all the information that can be inferred about the parameter, 0, Trom

observed data.
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Spppressipg the u'nimportant coefficients, the likelihdods for the 2 hypotheses are
obtained by integrating over the values of © covering the appropriate range:

A, pr=9fn=12,6<05) ocf

0

0,

e (1-0) a0
=1613%x10"°

A, p(r:9'n:12,9>0.'5)o<f109(1—9)3d¢9 (5.16)

05

Thus the likelihood ratio is 0.048. The new state of knowledge concerning 8 is then
expressed by the posterior odds:

p(4:|B) G.17)

This is a statement of the re]ative'plausibility of the 2 hypotheses based on the obser-

vapons.ﬁ If one were a betting person, one would offer odds of 19 to 1 against the coin
being biased toward “tails.” ‘

5.6 EXAMPLES RELEVANT TO UNCERTAINTY IN RISK ASSESSMENT
QUANTIFYING PLAUSIBILITY OF A CAUSE-EFFECT MODEL

Centra! to any risk assessment is a model of causality. At the onset, a conceptual
model is needed that identifies a plausible cause—effect relationship li,nking stressor
exposure to some effect. Most ecological risk assessments rely heavily on weight-
of-evidence or expert opinion methods to foster plausibility of the causal model
Unforfunately, such methods are prone to considerable error (Lane et al. 1987:
E;ltt;:hm;on i51(;1d Lanedl989; Lane 1989), and attempts to quantify that error are rare.’
ough seldom used in risk ass i ici i

tne plosibiity of a el s ‘essment, Bayesian methods can explicitly quantify

Le.t’s use a fictitious example to illustrate the application of Bayes’ theorem to
quantifying the level of belief warranted in a causal model. A fishkill is observed
below a discharge and the question is asked, “Did a toxic release (e.g., greater than
LQIO) from the point source cause the fishkill?” From the literature: one gathers
ev1depce to assess this causal hypothesis. From a toxicological study of the major
chemical gf concern in the discharge, the likelihood of a fishkill if the discharge
concentration was greater than LCIO (i.e., p(FishkilllRelease) > LCI10) is calculated
to 'bg 0.400. From historical discharge records, it is also calculated that the prob-
ability .of a discharge toxicant concentration greater than LCI0 (i.e., p(Release) >
LC10) is 0.005. From records of fishkills in this and similar streams of’the region, the
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likelihood of a fishkill (p(Fishkill)) is 0.003. This information can be applied with
Bayes’ theorem (Equation (5.10) to estimate the probability that there was a toxic
discharge (>LC10) given the observed fishkill:

pEFishkill | Release) - p(Release)
p(Fishkill)

p(Release | Fishkill) =

Inserting the above estimates into the right side of the equation gives a
p(ReleaselFishkill) of 0.666. Based on the evidence, the odds are 2 to | that the dis-
charge caused the fishkill. Is this evidence sufficient to take regulatory action? Likely,
it is not. One would need to gather more information in order to produce a level of
belief sufficient to decide whether or not regulatory action was required. Assume
that a characteristic lesion was found on the dead fish and that we know from the
literature that p(LesionINo Toxicant Exposure) = 0.010 and that p(LesionlExposure
to the Discharge Toxicant) = 0.540. The likelihood ratio is 0.54:0.01 or 54:1. The
posterior odds of 2:1 just calculated can become our new prior odds, and, based on
this new evidence and Equation (5.11), new posterior odds of the toxic release having
caused the fishkill can be calculated:

Posterior Odds = Likelihood Ratio x Prior Odds = 54 x 2 = 108:1

Based on this evidence, the odds that a toxic release caused the fishkill is a convinc-
ing 108 to 1. The level of belief is now sufficiently high for a reasonable person to
take regulatory action. Bayes’ theorem allowed optimal use of evidence to define
the belief warranted in the causal hypothesis that a toxic release caused the fishkill:
evidence changed our state of knowledge about the fishkill.

5.6.1 FEsTIMATING INDOOR RADON EXPOSURE

Empirical Bayes methods were applied to estimate geometric means (GM) of
indoor radon concentrations for Minnesota counties (Price et al. 1996). Data
were collected unevenly among counties, with some counties having very low
numbers of samples. Consequently, counties with low sample numbers had more
error in GM estimates than adequately sampled counties. Bayesian methods
allowed estimation of GM and associated variance despite these differences in
county sample sizes. Even if no measurements were available for a given county,
there is nonetheless some knowledge about the county GM. Denoting the loga-
rithm of the GM by 0, the GM were assumed to be log-normally distributed
among the counties based on existing data, i.e., the state of knowledge of 0 is
represented by p(0) = N(p, 62), where p = the “true” mean of the logarithm of
radon concentration over all counties. The p(0) is the informative prior distri-
bution. Also, radon concentrations were judged to be log-normally distributed
within counties based on results for amply sampled counties: N(u, 62) for the
logarithm of radon concentration. New estimates of county GM were then esti-
mated with Bayes’ theorem,
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p(g|y)=£@£@

p(y) (.18) -

where p(6ly) = the probability that the true mean is 6 given the data y, and p(yl6) =
the likelihood or probability of the data set, y, given 8. The p(y) is a constant that,
in practice, is estimated such that the right side of the equation integrates to unity
(O’Hagan 2001). The “true” GM’s of county radon concentrations were estimated
with a modification of this equation and sample-size weighting of county geomet-
ric means. The informative prior distribution as modified by the likelihood of get-
ting the data, y, for a county given 8 and a better estimate of © was produced: one
“learned” from a particular county’s data to produce a better estimate. The value of
0 that maximizes Equation 5.18 can be considered a “best guess” of the true value
of 6.

5.6.2  SPECIES SENSITIVITY EXAMPLE

Suppose that we wish to know the species sensitivity distribution (SSD) for a new
pesticide, chemical A. Specifically, we wish to know the collection of LC50 values
for many species. Unfortunately, chemical A has been tested on only a very limited
number of species. For each species, an LC50 value has been estimated. Suppose also
that pesticide B, having similar chemical structure and identical mode of action, has
been tested on many species. Can we use the information about B to help us estimate
the SSD for A and, if so, how? One way, of course, is informal. We take our knowl-
edge of B and our subject matter knowledge, cogitate for a while, and come up with
our best guess for the species sensitivity curve for A. However, a Bayesian approach
provides a more formal, quantitative method for using the information about B.

We begin with a model for the shape of the SSD. For the sake of argument, we will
assume that the SSD of B is approximately normal. That is, the histogram of the LC50
values for pesticide B looks approximately like a normal density with mean py, and vari-
ance’ 65 . We may reasonably expect the SSD of A also to be normal with unknown mean
5 but the same variance, 04 = 0%. Standard statistical theory tells us how to estimate 1,
and ¢ from the few species that have been tested with A. But Bayesian statistics goes a
bit further by telling us also how to use the information about pesticide B.

The fact that A and B are so similar chemically suggests that their SSDs will also
be similar. We can model that by saying that p, is likely to be within a range of py
plus or minus, for example, 200. This is formally expressed by a statement such as

Ha ~ N (5.100?) - (5.19)

i.e., p, has a normal distribution with mean pj and variance 100%. The 1002 arises
because we treat the range of +200 as about 2 standard deviations; so 1 standard
deviation is 100 and the variance is 1002, Equation 5.19 is the prior probability distri-
bution for y1,,. Suppose that each species tested with chemical A yields an LC50 value.
Then Bayes’ theorem and Bayesian statistics provide the formula for combining the
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prior distribution of p, with the data to yield the posterior distribution. Suppose that
there were 4 species tested with A that yielded LC50 yalues of yis Y2, Ya» Yar
The likelihood function, p(datalp,), for these data is

p({y 32303 a) = (0 ) (32 l1a) - P (vl P (s s

e—(yn-ua)z/w% . e—(yz—uA)z/N% ;e—(ys—uA)2/2°%, ) e—(y4—u,4)2/26%
Sl

N e—[(;—mz/(o%/zt)]/z ; (5.20)

where y = (1/ 4)(y[ +y+ys+ y4) , i.e., the mean of the observ.ati(?ns. ‘It is gssumefi
that the observations are independent samples from a norma¥ dlstrlbutlop with vari-
ance o5 . The likelihood function of 1, is a normal curve w1tb th.e m'a1x1mum aty,
and a variance of 0% / 4 . Bayes’ theorem gives the posterior distribution of p, as

p(al{y s s m}) = p({31 3235y a) ()
{owat /sl Aol ot |f

oce[

[ G-na)/ (o3/4) ] (ha-s?/ 1002 ) /2

o< e

(5.21)

Some algebra reveals that the posterior distribution of u, is normal with mean

(y1 + Y+ Y3 +y4/6%)+(u3/1002)

(4/03)+(1/100%) (5:22)
and variance
1
(4/0%)+ (1/100%) (5.23)

These equations illustrate a common feature of Bayesian analysis: the posterl‘or mean
is a compromise between the prior mean and the data. In our examp{e, as m'e\t/lerzll
simple example with normally distributed data, the posterlo}r mean is a we;)g tc;l

average of the prior mean and the data point§. Each df':\ta pf)lnt is Welghted' y t ei
reciprocal of its variance, 1/ 6%, just as the prior mean is we.lghted by the reciproca
of its variance, 1/100%. Because the reciprocal of a variance 18 such a useful concept,

it is given a special name, precision. The posterior mean is just the weighted average
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of the prior mean and the data; the weight isi
s the o ; ights are.the precisions. The. general formula

posterior mean — E (data precision X data value) -+ prior precision X prior mean

Z( data precision) + prior precision

posterior precision = N x data precision + prior precision

1 , (5.24)

posterior variance =
posterior precision

Terms in the formula get more or less weight according to their precision, i.e., accord-
;lng to how accurate they are as measures of u,. The posterior precision measures

ow accurately we }mow U4 Itis the sum of the prior precision and the precisions of
each of the data points. In our example that is

I R B

2 2 2 +t—
100> o} oF o3 o}

(5.25)

This SImPIe example illustrates principles of Bayesian analysis and how it accom-
modates information from different sources. Real situations and real analyses can
be more complicated than our example. For example, when species are tested with
che.mlcal A, we might not know their LC50 values exactly; instead, we might have
estimates of LC50 values. Or we may have data on another simiiar chemical C.

5 _]USt the anal sis to aCC()m]“()date lhe more com llCated

5.6.3 INFERENCE ABOUT CONFIDENCE INTERVALS

Confidence intervals are interpreted differently by frequentists and Bayesians. The
95% confidence interval derived by a frequentist suggests that the “true” valixe of
some parameter (8) will be contained within the interval 95% of the time in an
infinite number of trials. Note that each trial results in a different interval because
the'data are different. This statement is dependent on the assumed conditions under
(v;;l:ilc}l t?e calculat.ions v:/ere done, e.g., an infinite number of trials and identical con-
ime(;l\fﬂ (C)(r) :l:ta;l:] Stltllzli; ‘(‘(t)r iﬁg;n 2001). Nothing can be said about whether or not the
‘ The Bayesian approach reverses the role of the sample and model: the sample
is fixed and unique, and the model itself is uncertain. This viewpoint .corres orllpds
more closely to the practical situation facing the individual researcher: there is onl

1 sample, and there are doubts either what model to use, or, for a spe'ciﬁed modely
what parameter values to assign. The model uncertainty is addressed by considerin ,
that the model parameters are distributed. In other words Bayesian interpretation O%f
a confidence interval is that it indicates the level of belief warranted by tﬁe data: the
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posterior probability is 0.95 that the “true” O is within the stated 95% confidence

interval. Statements are made about 0 based on the data alone, not an infinite number
of virtual trials.

The classical or frequentist approach to probability is the one most taught in uni-
versity courses. That may change, however, because the Bayesian approach is the
more easily understood statistical philosophy, ‘both conceptually as well as numeri-
cally. Many scientists have difficulty in articulating correctly the meaning of a
confidence interval within the “classical” frequentist framework. The common mis-
interpretation: the probability that a parameter lies between certain limits is exactly
the correct one from the Bayesian standpoint.

Apart from this pedagogical aspect (cf. Lee 1989, preface), there is a more techni-
cal reason to prefer the Bayesian approach to the confidence approach. The Bayesian
approach is the more powerful one eventually, for extending a model into directions
necessary to deal with its weaknesses. These are various relaxations of distributional
assumptions. The conceptual device of an infinite repetition of samples, as in the
frequentist viewpoint, does not yield enough power to accomplish these extensions.

Confidence intervals using frequentist and Bayesian approaches have been com-
pared for the normal distribution with mean p and standard deviation 6 (Aldenberg
and Jaworska 2000). In particular, data on species sensitivity to a toxicant was fitted
to a normal distribution to form the species sensitivity distribution (SSD). Fraction
affected (FA) and the hazardous concentration (HC), i.e., percentiles and their confi-
dence intervals, were analyzed. Lower and upper confidence limits were developed
from f statistics to form 90% 2-sided classical confidence intervals. Bayesian treat-
ment of the uncertainty of p and © of a presupposed normal distribution followed the
approach of Box and Tiao (1973, chapter 2, section 2.4). Noninformative prior distri-
butions for the parameters pt and ¢ specify the initial state of knowledge. These were
constant ¢ and 1/0, respectively. Bayes’ theorem transforms the prior into the pos-

terior distribution by the multiplication of the classic likelihood function of the data
and the joint prior distribution of the parameters, in this case p and o (Figure 5.4).

The Bayesian equivalent to the frequentist 90% confidence interval is delineated
by the Sth and 95th percentiles of the posterior distribution. Bayesian confidence
intervals for SSD (Figures 5.4 to 5.5), 5th percentile, i.e., HCS and fraction affected
(Figures 5.4 to 5.6) were calculated from the posterior distribution. Thus, the uncer-
tainties of both HC and FA are established in 1 consistent mathematical frame-
work: FA estimates at the log,, HC lead to the intended protection percentage, i.e.,
FA(log,, HC ,5,0) = p where p is a protection level. Further full distribution of HC
and FA uncertainty can be very easily extracted from posterior distribution for any
level of protection and visualized (Figures 55t057).

For the normal distribution there are analytical solutions allowing the assessment of
both FA and HC using frequentist statistics. In contrast, Bayesian solutions are numer-
ical. This highlights the flexibility of the Bayesian approach since it can easily deal
with any distribution, which is not always possible with the frequentist approach.

Aldenberg and Jaworska (2000) demonstrate that frequentist statistics and the
Bayesian approach with noninformative prior results in identical confidence intervals for
the normal distribution. Generally speaking, this is more the exception than the rule.
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FIGURE 5.4 Bayesian normal density “spaghetti plot™ random sample of 100 normal prob-
ability density functions (pdfs) drawn from the posterior distribution of u and ©, given 7
cadmium NOEC toxicity data (dots) from Aldenberg and Jaworska (2000).
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FIGURE 5.5 Bayesian posterior normal probability density function values for SSD for
cadmium and its Bayesian confidence limits: 5th, 50th, and 95th percentiles (black) and
Bayesian posterior probability density of the HC5 (gray).
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FIGURE 5.6 Bayesian confidence limits of the fraction affected: Percentile.:s (5th, 50th, _anq
95th) of posterior normal cdfs for cadmium. Data plotted cumulatively at (i — 0.5)/n , with i
rank order, and n the number of species tested.
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FIGURE 5.7 Bayesian posterior probability density of the fraction affected at median log
(HCS5) for cadmium.
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For those who feel more confident with the frequentist approach and find the
Bayesian approach controversial to some extent, it is advantageous that both
approaches yield the same answers in this simplest case. This might add confidence
in the Bayesian approach for some practitioners.

5.7 CONCLUSION

The general Bayesian context is presented in this brief chapter with the intent of
building sufficient understanding so that the reader can fully appreciate the meth-
ods presented with more complexity in following chapters. The distinction between
the frequentist and Bayesian vantages was made using contrasting analyses of the
outcomes of simple coin-toss trials. Then, the Bayesian theorem and associated con-
cepts were explored briefly. Three examples relevant to uncertainty in risk assess-
ments were given: estimation of the level of belief warranted for a causal model,
estimation of exposure concentrations based on uneven sampling of a study area, and
interpretation of confidence intervals. Hopefully, more involved Bayesian methods
applied in later chapters will now be more easily understood.
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