Observations and modeling show Irene's storm tide lower than that of Isabel and Nor'Ida

  • Hurricane Irene
    Hurricane Irene   Waves hit the VIMS shoreline during Hurricane Irene. Photo from Andrews Hall at ~ 2 pm on Saturday August 27th 2011 by David Forrest.  
  • Boat Shed
    Boat Shed   Superimposed black line indicates the extent of flooding in the VIMS Boat Basin during Hurricane Irene in August 2011.  
  • Floodline
    Floodline   Superimposed red line marks the extent of high water in VIMS Boat Basin during Hurricane Irene in August 2011.  
  • Wrackline
    Wrackline   Wrackline above VIMS Beach shows extent of high water during Hurricane Irene in August 2011.  
  • Gloucester Point Park
    Gloucester Point Park   Residual water in Gloucester Point Park following Hurricane Irene on August 27 2011.  
  • Downed Tree
    Downed Tree   A tree obstructs Greate Road near the bottom of hill at Gloucester Point following Hurricane Irene in August 2011.  
  • Pier and Breakwaters
    Pier and Breakwaters   New elevated concrete pier and stone breakwaters minimized damage to the VIMS shoreline during Hurricane Irene in August 2011.  
  • An empty Boat Basin
    An empty Boat Basin   A rare sight as nearly all of the vessels have been removed from the VIMS Boat Basin in preparation for Hurricane Irene in August 2011.  
  • Vessels in Triangle Parking Lot
    Vessels in Triangle Parking Lot   VIMS staff moved nearly all of VIMS' 40-vessel fleet from the Boat Basin onto higher ground in preparation for Hurricane Irene in August 2011.  
Photo - of -
Agencies and public use VIMS data products to plan for storm
Tidewatch Observations

Data from the Tidewatch network developed and operated by VIMS professors John Boon, John Brubaker, and David Forrest show that peak water levels in lower Chesapeake Bay during Hurricane Irene were—with the exception of one tide station—slightly lower than in either Hurricane Isabel  (2003) or the “Nor’Ida” storm of November 2009.

The researchers caution that their data are preliminary and may change as they continue their analysis.

Tidewatch measures the difference between predicted tides and observed water levels at 9 locations within Chesapeake Bay—7 water level stations maintained by NOAA's Center for Operational Oceanographic Products and Services and 2 operated by VIMS. This difference—the residual—represents non-tidal, weather-induced change in water level including storm surge.

Tidewatch charts provide an effective way to measure, visualize, and predict the magnitude and impacts of coastal flooding in a given location. The use of Tidewatch charts can help forecasters and coastal residents better prepare for storm tides and minimize their potential impacts. They are particularly useful for comparing storm tides in areas with different tidal ranges.

Preliminary Tidewatch data show that peak water-levels during Irene—measured in feet above highest astronomical tide—ranged from 4.4 feet at Money Point (on the southern branch of the Elizabeth River near Portsmouth) to 2.77 feet at Windmill Point (at the mouth of the Rappahannock River near Kilmarnock). For comparison, peak water levels at Money Point were 4.69 feet during Nor’Ida and 4.26 feet during Hurricane Isabel. Peak water levels during Irene occurred at around 9 pm on Saturday evening August 27th in conjunction with the high tide.

Peak water levels in feet above highest astronomical tide (HAT)* during Hurricane Irene and other storms


Isabel Ernesto Nor'Ida Irene
Money Point 4.26 1.66 4.69 4.4
Sewells Point 4.36 2 4.21 4.02
Jamestown** no data no data 4.16 3.31
Back River** no data no data 4.22 3.81
CBBT 3.72 1.74 3.8 3.56
Kiptopeke 2.74 2.04 3.12 2.72
Yorktown no data 2.67 3.62 3.26
Windmill Point no data 3.27 2.63 2.77
*HAT as determined by preliminary VIMS analysis—use with caution
**Water-level data from VIMS Tidewatch network is not yet verified—use with caution

 

Computer Modeling

The Tidewatch data accord well with real-time computer simulations of Irene's storm tides generated at VIMS by professor Harry Wang and colleagues. Maximum storm surge in Chesapeake Bay as simulated by Harry Wang's modeling group at VIMS. Click for larger image.The high-resolution model of Chesapeake Bay storm tides generated by Wang's team showed a  2.2-meter (7.21 foot) maximum rise in water level above mean lower low water (MLLW) at the Chesapeake Bay Bridge Tunnel during the passage of Irene, which compares to an observed rise of 7.38 feet above MLLW at the Bridge Tunnel from the Tidewatch network.

(Tidewatch references storm tides to both MLLW and the highest astronomical tide, or HAT, for a discussion of the differences between these two tidal datums, read John Boon’s explanation.)

The members of Wang's team—professors Jian Shen and David Forrest, marine scientist Mac Sison, and post-doctoral researchers and graduate students Yanqui Meng, Hongzhou Xu, Bo Hong, Chaofeng Tong, Yi-Cheng Teng, Derek Loftis, Qubin Qin, and Zhengui Wang—worked for nearly 72 straight hours during the approach and passage of slow-moving Irene, generating 30-hour forecasts of storm tides in the Bay with a new update every 6 hours.

The six-hour interval between their successive forecasts is governed by the availability of new wind and atmospheric-pressure data from the National Weather Service, NOAA's National Centers for Environmental Prediction, and WeatherFlow Inc.'s Regional Atmospheric Modeling System.

The VIMS model uses these wind and pressure data as input to "force" the model simulation. The amount of data needed to force the model is massive. Even though Wang's team runs their simulations on cutting-edge parallel computing systems at VIMS and the College of William and Mary, each 30-hour simulation averages 30-45 minutes of computer time.

In addition to their modeling of water levels above mean lower low water, Wang's team also conducted an experimental simulation of shoreline flooding for the Greater Hampton Roads area. They are now in the process of comparing this simulation with tidal-gauge measurements recorded by the U.S. Geological Survey. 

Public Use of Research Products

Mr. Jeff Orrock, Meteorologist-In-Charge of the National Weather Service office in Wakefield, Virginia,  says that model storm-surge runs generated by professor Wang's team at VIMS were highly beneficial.

"We used the simulations continuously as the storm approached, comparing forecast surge levels to the observations and guidance provided by the National Hurricane Center," says Orrock. "The VIMS surge runs increased our confidence in local forecasts, assisting in coordination with local emergency officials and media."

Mr. Lew Grimm, owner of the Deltaville Yachting Center, also praised VIMS' Irene-related research efforts, noting his use of the data provided by the Tidewatch network.

"We not only watched the VIMS' water-level predictions," says Grimm, "we actually sent it out to 2,000 of our customers in a twice-daily storm update."

"Knowledge is power," says Grimm, "and in a situation such as last weekend, you need all the knowledge you can find."